
Rと RStudioの使い方入門
グラフの作成(1)

標準パッケージ graphics

1

標準関数によるグラフ作成
（Windows 11 の PC を使用）

プレゼンターのノート
プレゼンテーションのノート
　R と RStudio を使って、標準パッケージ graphics の関数など、標準関数によるグラフの作成方法を解説します。
　初めて使う人に向けた入門という位置付けです。できるだけ図を利用して、分かりやすく解説するように努めました。また、実際に操作しながら理解を図るようになっています。
　なお、Windows 11 の PC の使用を前提としています。

Rと RStudioの使い方入門－１

1 Rにおけるグラフ作成環境
2 標準パッケージ graphics の関数
3 関数 plot() の使い方
4 関数 plot() 以外の関数の使い方
5 標準関数によるグラフ作成

2

★本 PDF の内容については、
自己責任で利用してください

★PowerPoint のスピーカーノートを
PDF の注釈に変換してあります

PDF をダウンロードして最新の
Adobe Acrobat Readerで利用して下さい

プレゼンターのノート
プレゼンテーションのノート
　1～5 の順序に説明していきます。
　内容について正確を期すように最大限努力しましたが、自己責任で利用してください。
　PowerPoint のスピーカーノートを、PDF の注釈に変換してあります。PDFをダウンロードして、最新の Adobe Acrobat Readerで開いてください。ダウンロードしないと、注釈が正常に表示されない場合があるようです。

はじめに

 R スクリプトとコード
R スクリプト
複数の R関数、演算子、制御文などを
組み合わせたコードの集まり

シンプルな散布図を作成：plot(x, y)

データの読み込み、加工、可視化、統計解析等
特定の目的を達成する

Rスクリプトを作成してデータ解析を実行
スクリプトは１つのコードで済む場合もあれば、
目的によってては数十行にも及ぶ
必ずしも白紙の状態から作り上げるわけではない
再利用が基本

3

３つの層別散布図と確率楕円を表示する R スクリプト

プレゼンターのノート
プレゼンテーションのノート
　本論に入る前に、R 言語の学習全般における考え方を示します。
　R を利用してデータ解析を行うには、目的に合わせた R スクリプトを作成します。R スクリプトは、複数の R 関数、演算子、制御文などを組み合わせたコードの集まりです。たとえば、最もシンプルな散布図は plot(x, y) という１つのコードで作成できます。一方、右に示した R スクリプトは、層別散布図と確率楕円を組み合わせたグラフを３つ同時に作成し、外観をカスタマイズしています。
　このような R スクリプトを作成して実行することにより、データの読み込み、加工、可視化、統計解析などを行います。
　１つのコードで目的を達成できる場合もありますが、目的によっては数十行のコードから成るスクリプトが必要な場合もあります。
　規模が大きい スクリプトを作成するには時間と知識が必要です。しかし、このような R スクリプトを、白紙の状態から作り上げるわけではありません。スクリプト の再利用が基本です。

はじめに
R スクリプトの作成と再利用
典型的な R スクリプトや過去のプロジェクトで作成した R スクリプトを保存・再利用
AIを活用して、目的を実現する R スクリプトを生成（AI 支援を前提とした学習）

↓
既存のサンプルデータで正常に動作するかを確認、Rスクリプトの内容とその動作を理解

↓
目的に合わせて R スクリプトをカスタマイズ

(i) 対象データに合わせた修正（ファイルの読込、列名・データ型の違いに対する変更など）
(ii) データ解析の目的に合わせた修正（集計の条件変更、グラフのカスタマイズの変更など）
(iii) 複数のスクリプトを統合・連携（例：Aのスクリプトで前処理→Bのスクリプトで可視化）

R のスクリプトは再利用が基本
R 言語の学習を進める上では、既存のスクリプトやAIが生成したスクリプトを把握して、
自分の目的に合わせて修正・応用する能力を身に着けることを意識して学習

4

プレゼンターのノート
プレゼンテーションのノート
　典型的な R スクリプトや、過去のプロジェクトで作成した R スクリプトを保存しておき、必要な時に取り出して再利用します。また、AI を活用してスクリプトを生成させることは非常に効率的であり、現代の基本的スタイルです。AI 支援を前提とした学習を進めていきます。
　ただし、これらのスクリプトは、「出発点」にすぎません。そのままでは動かないか、意図した通りの結果にならないことが多々あります。まずは、よく分かっている既存のサンプルデータを使って、正常に動作するかを確認し、スクリプトの内容とその動作を理解します。
　その上で、目的に合わせて R スクリプトをカスタマイズします。(i) 解析する対象データに合わせてスクリプトを修正します。たとえば、データファイルの読込、列名やデータ型の相違への対応などです。(ii) データ解析の目的に合わせてスクリプトを修正・変更します。たとえば集計の条件を変える、グラフの種類や見た目を調整することなどです。(iii) 複数のスクリプトを統合・連携させることも必要になります。たとえば、A のスクリプトで前処理し、B のスクリプトで可視化するような組み合わせです。
　R 言語の学習を進める上で、保存しておいた既存のスクリプトや公表されているスクリプト、AI が生成したスクリプトなどを基にして、自分の目的に合わせて修正・応用する能力を身に着けることを意識して学習します。

はじめに
本セミナーの学習ポイント

1 R の標準関数によるグラフ作成の全体像を把握、「どんなグラフが描けるか」を広く理解
2 実践的な学習：ハンズオン

説明に使う全てのスクリプトとデータを提供、実際に自分の手でコードを実行して理解する
3 コードは「暗記」ではなく「理解」を

何十行にもわたるスクリプトの説明、関数の詳細な使い方などの説明もあるが、暗記は不要
「こんな機能をもつ関数がある」「この部分を指定する引数がある」という程度の理解で十分

4 該当するスクリプトを参照できること（思い出せること）が重要
グラフを作成するときに、「あのスクリプトが使えそうだ」と思い出す
該当するスクリプトを探し出して、改めてその内容を確認・理解してグラフを得る

5 今後、データ解析はAI と人との協働作業に発展
AIとのコミュニケーション能力を身に着ける（AIへの的確な指示、AIの回答を正しく判断）
そのための基礎的な知識・スキルを学習 （入門者はAI に頼りすぎないで自分で考える）

5

プレゼンターのノート
プレゼンテーションのノート
　1　このセミナーで、R言語の標準関数によるグラフ作成の全体像が把握できます。すべてを完璧にマスターすることや、深く掘り下げるというよりも、「Rでどんなグラフが描けるか」を広く理解することを目指します。
　2 実践的な学習を行うようになっています。実際に手を動かしてコードを実行することで、R言語を身につける第一歩としてください。　
　3 コードを「暗記」ではなく、「理解」するように意識することが大切です。セミナーでは、何十行にもわたるスクリプトや、関数の詳細な使い方などの説明もありますが、すべてを覚える必要はありません。「こんな機能をもつ関数がある」「この部分を指定する引数がある」という程度の理解で十分です。
　4　実務でグラフを描く場面、「あのスクリプトが使えそうだ」と思い出せることが重要です。そのときに改めてスクリプトの内容を確認・理解して、実務に活用してください。
　5　今後、データ解析はAI と人 との協働作業に発展していきます。そのためには、AI へ的確な指示を出せる能力、AI の回答を正しく判断する能力など、AI とのコミュニケーション能力が必要です。そのための基礎的な知識・スキルを学習してください。
　ただし、学習することを意識して、AI に頼り過ぎないようにして、自分でじっくりと考える時間を確保してください。

はじめに

本セミナーの説明範囲
R と RStudio を使って、標準関数によるグラフ作成の基本システムについて説明
データに適したグラフの選択、グラフから読み取れる内容などについては次回に説明

（関連する専門書、ネット上のサイト、AI の回答などを参照）
注）「R と RStudio の使い方－1」と「R と RStudio の使い方－2」の内容を

理解しているという前提で説明

関連ファイルのダウンロード
この PDF をダウンロードしたサイトから「Rスクリプト」をダウンロード
ダウンロードした圧縮ファイル（zipファイル）を解凍
Rスクリプトファイルを３つ得る

my_base_graphics1.R、my_base_graphics2.R、my_base_graphics3.R

6

プレゼンターのノート
プレゼンテーションのノート
　本セミナーは、R によるグラフ作成の基本知識を習得するために、先ずはどのようにしてコードを記述するか説明しています。グラフの選択、グラフから読み取れる解析結果などについてはごく簡単に説明しているだけなので、関連する専門書、ネット上のサイト、AI の回答などを参照してください。これについては、次回にまとめる予定です。
　「R と RStudio の使い方－1」と「R と RStudio の使い方－2」の内容を理解しているという前提で説明を進めます。
　本セミナーに先立ち、R スクリプトファイルなどの関連ファイルを、この PDF ファイルを得たサイトからダウンロードします（操作）。
　この圧縮ファイルを解凍して３つのファイルを得ます（操作）。
　この後、RStudio でプロジェクトを作成してから、そのフォルダに３つのファイルを保存ます（後で操作）。
　

1 Rと RStudio におけるグラフ作成環境

RStudio を使用したグラフ作成
Rのグラフ作成用パッケージ

graphics・lattice・ggplot2

7

プレゼンターのノート
プレゼンテーションのノート
　R のグラフ作成用パッケージの中から、代表的なパッケージを３つ挙げて、R でグラフを作成する環境を示します。
　

Rと RStudio におけるグラフ作成環境

8

［Plots］タブにグラフが表示

グラフ作成用の関数を実行

新規プロジェクトを作成
「my_base_graphics」

デバイス領域（出力先）
デバイス番号 1：null デバイス
デバイス番号 2：[Plots]タブ（RStudioGD）

RStudio を普通に利用する場合、考慮は不要

プレゼンターのノート
プレゼンテーションのノート
　RStudio と R を起動します（操作）。
　これから行う作業のために、新しいプロジェクトを作成します（操作）。
　ここでは仮に、「my_base_graphics」という名前にしていますが、命名は自由です。
　グリーン枠で示したように、右下のペインの[Plots]タブをクリックして開けます（操作）。
　現在は空白ですが、このタブにこのようなグラフを描いていきます。
　RStudio で、グラフ作成用の関数を実行すると、[Plots]タブの中にグラフが表示されます。　このグリーン枠で示したタブが、グラフの出力先である「デバイス領域」になります。　
 なお、[Plots]タブに割当てられているデバイスは番号 2です。デバイス番号 1 は null デバイスで、開いたデバイスがないときの「待機デバイス」として動作の安定性を維持しています。RStudio を普通に利用する場合、特にデバイス番号を考慮する必要はりません。

Rと RStudio におけるグラフ作成環境

9

(iv) 矢印アイコン
履歴を移動

(v) Zoom アイコン
ウィンドウを開く

(vi) Export アイコン
グラフを保存

(ii)［Plots］タブにグラフが表示
デバイス領域（出力先）

(iii) ペインの
サイズを調整

(iii) ペインの
サイズを調整

(viii) 履歴にある
全てのグラフを消去

デバイス領域の初期化
(dev.off() とは異なる)

(vii) 表示中の
グラフを消去

(i) plot(1:7)
 plot(1:5)

プレゼンターのノート
プレゼンテーションのノート
 (i) Console に「plot(1:7)」 を入力してグラフを表示します（操作）。
　　　さらに、「plot(1:5)」を入力して２つ目のグラフを表示します（操作）。
 (ii) 作成したグラフは、グリーン枠で示した [Plots]タブの中に表示されます。これがデバイス領域です。　　　
 (iii) このペインの境界線をドラックしてサイズを調整すると、表示されるグラフの「形」と「大きさ」を変えることができます（操作）。
　[Plots] タブに付属するアイコンは、左から、(iv) 図表の履歴を移動する２つの「矢印アイコン」、(v) ズームウィンドウを開ける 「Zoom アイコン」、(vi) グラフを保存する「Export アイコン」、(vii) 表示中のグラフを消去する「×アイコン」があります。
　(viii) 履歴にあるすべてのグラフを消去する「箒(ホウキ)のアイコン」があります。これをクリックすると、グラフの消去と共に、デバイス領域が初期化されます。したがって、関数 par() で設定したグラフィックスパラメータはすべて初期化されます。つまり、デフォルトの状態に戻ります。ただし、デバイス領域が閉じられるわけではないので、関数 dev.off() の代わりにはなりません。
　(i)～(viii) を自由に行って、動作内容を確認します（操作）。
　なお、グラフを消去して新たにグラフを作成する場合、Console のプロンプトの後にカーソルを位置して、キーボードから「↑」矢印を１回入力する場合、２回入力する場合、「plot(1:7)」 と「plot(1:5)」が表示されるので、そのコードを実行することができます。

Rと RStudio におけるグラフ作成環境

10

(i) Zoom アイコン
ウィンドウを開く

(ii) ペインの
サイズを調整

(iii) ウィンドウの
サイズを調整、拡大

Zoom ウィンドウのグラフ
［Plots］タブのグラフと
内容は同じ、形が異なる

プレゼンターのノート
プレゼンテーションのノート
　(i) ズームアイコンをクリックして、別ウィンドウにグラフを拡大表示します（操作）。
　(ii) 右下のペインの[Plots]タブの境界をドラックして、サイズを変えます（操作）。
　(iii) ズームウィンドウの境界をドラックして、サイズを変えます（操作）。
　ズームウィンドに表示されたグラフは、拡大して表示されます。イメージの拡大ではないので、細部がぼやけることはありません。
　[Plots]タブのサイズと、ズームウィンドウのサイズは、独立して設定できます。したがって、Zoom アイコンで開いたウィンドウに表示されたグラフと、[plots]タブに表示されたグラフは、内容は同じですが、形は異なります。

Rと RStudio におけるグラフ作成環境

RStudio でのグラフの表示領域
(i) グラフの表示領域＝デバイス領域
グラフは［Plots］タブの中に表示
［Plots］タブの画面サイズはそのペインのサイズで調整、小さ過ぎると描画不可（エラー）

複数のグラフを連続して作成すると直近のグラフが１つ表示、前のグラフは履歴に移動
矢印アイコン（左右の矢印）で履歴を移動して、前のグラフや後のグラフに切り替え可能
試行錯誤しながら複数のグラフを作成して改良していく際に便利

複数のグラフを同時に表示する場合、［Plots］タブの領域を格子状のグリッドに分割
パッケージごとにシステムが異なり、設定方法が異なる

(ii)ズーム機能
ズームウィンドウを開いて、グラフを拡大表示（［Zoom］アイコンによる）
ズームウィンドウは、元の［Plots］タブのサイズに影響されずに独立してサイズ変更が可能

(iii)グラフをファイルに保存（PNG、JPEG、TIFF 、PDF等 ）「R と RStudio の使い方－2」参照
11

プレゼンターのノート
プレゼンテーションのノート
　これまで説明した内容を補足します。
 (i) グラフを表示する [Plots］タブのサイズは、[Plots］タブがあるペインのサイズで調整します。小さ過ぎると描画できないので、エラーになります。その場合は、ペインを大きくして再度実行します。または、ズームウィンドウを利用します。
　複数のグラフを連続して作成すると、直近のグラフが１つ表示されます。前のグラフは消去されたのではなく、履歴に移動しています。そこで、矢印アイコンで履歴を移動して、複数のグラフの表示を切り替えます。試行錯誤しながら複数のグラフを作成して改良していく際に便利です。�　複数のグラフを同時に表示する場合、タブの画面を格子状のグリッドに分割します。ただし、設定方法はパッケージごとに異なります。この後で詳しく説明します。
　(ii) グラフをズームウィンドウで開いて拡大表示できます。ズームウィンドウのサイズは、元の [Plots]タブ のサイズに影響されず、独立してサイズ変更が可能です。
　(iii) グラフを PNG、JPEG、TIFF 、PDF 等の形式でファイルに保存できます。詳細は、既に公表してある PDF で説明済みです。

Rと RStudio におけるグラフ作成環境

 R の主なグラフィックパッケージ
代表的なパッケージ：標準パッケージ graphics、推奨パッケージ lattice、外部パッケージ ggplot2

それぞれのパッケージは異なる設計思想と設計アプローチを持つ
graphics Rの基本的なグラフ描画機能、軽量かつシンプル（base、stats の一部の関数を含む）

 高水準と低水準の関数の組合せで作図し、短いコードで素早くグラフを作成
 小規模な解析やシンプルなグラフ作成に適すが、高度なカスタマイズには手間がかかる

lattice 条件付きプロット（カテゴリごとのグラフ分割）に特化
 formula記法による簡潔な記述、トレリスグラフィックスで複数のグラフを同時表示

 多変量データの視覚化、グループ別比較に適す

ggplot2 レイヤーを積み重ねて構築する柔軟で強力なグラフ描画システム
美しく整ったデザインと高いカスタマイズ性
データサイエンスの現場では、標準ツールの一つとして広く使用されている

12

パッケージ base, stats の一部の関数も含む

プレゼンターのノート
プレゼンテーションのノート
　R のグラフ作成用の代表的なパッケージは、標準パッケージの graphics、推奨パッケージの lattice、外部パッケージの ggplot2 です。それぞれのパッケージは異なる設計思想と設計アプローチを持っています。なお、標準パッケージ graphics の標準関数の他に、パッケージ base と stats に含まれるグラフィックス関数もここに含めて説明します。
　graphics は、Rの基本的なグラフ描画機能であり、R によるグラフ作成に慣れる上で最初に触れるべき関数です。graphics は一般的な用語であるため、このパッケージであることを示すために、「base」を付けることもあります。なお、パッケージ graphics を一通り学習した後、次の lattice に進んでください。
　lattice は、条件付きプロットという複数のサブプロットを生成する機能に特化しています。特に多変量データの視覚化、条件によるデータ分割とプロットの比較を得意としています。
　ggplot2 は、Rで最も人気があるグラフィックパッケージであり、強力で柔軟なグラフ作成ツールです。データサイエンスの現場ではほぼ標準ツールの一つとして広く使用されています。文法が前二者と大きく異なっており、コードがやや長くなる傾向があるため、慣れるまで多少時間がかかるかもしれません。

Rと RStudio におけるグラフ作成環境

 R の主なグラフィックパッケージ
代表的なパッケージ：標準パッケージ graphics、推奨パッケージ lattice、外部パッケージ ggplot2

それぞれのパッケージは異なる設計思想と設計アプローチを持つ

１つのグラフの作成には、
１つのパッケージの関数を使用
異なるパッケージの関数を混在させない

（例外あり）

13

１つのグラフ（図）の作成には
１つのパッケージの関数を

組み合わせて使用

プレゼンターのノート
プレゼンテーションのノート
　これらのグラフ作成用のパッケージを使うときの重要な注意事項があります。それは、１つのグラフの作成には、１つのパッケージの関数のみを組み合わせて使用します。異なるパッケージの関数を混合して使ってはいけません。例外もあります。
　なお、1つのグラフを作成後、次に作成するグラフには、別のパッケージの関数を使っても問題はありません。

Rと RStudio におけるグラフ作成環境

 R の主なグラフィックパッケージ
代表的なパッケージ：標準パッケージ graphics、推奨パッケージ lattice、外部パッケージ ggplot2

それぞれのパッケージは異なる設計思想と設計アプローチを持つ

１つのグラフの作成には、１つのパッケージの関数群のみを使用
 異なるパッケージの関数を混合して使わない
混合すると、座標系や描画方式の違いにより、予期しない結果や描画エラーが生じる
同じデバイス領域に次のグラフを作成する場合、前とは別のパッケージの関数が使える

実践的なアプローチ
(i) 作成するグラフの目的とイメージを明確にする
(ii) その目的とイメージに適するパッケージを選択
(iii) 選択したパッケージの関数のみでグラフを完成させる
 パッケージ graphics などで簡易に描いたグラフを、他のパッケージで作図し直すこともある

14

プレゼンターのノート
プレゼンテーションのノート
　前のスライドで説明したように、R には多数のグラフ作成用のパッケージがありますが、１つのグラフを作成するときに、同一のパッケージの関数を使います。異なるパッケージの関数を混合して使うと、それぞれの座標系や描画方式の違いにより、予期しない結果や描画エラーが生じる可能性があります。１つのグラフを作成した後、同じデバイス領域に次のグラフを作成する場合、前とは別のパッケージの関数が使えます。
　そこで、グラフを描くには、まず、作成したいグラフの目的とイメージを明確にして、それに適するパッケージを選択します。そして、選択したパッケージの関数のみでグラフを完成します。
　また、一度 パッケージ graphics の関数で簡易に描いたグラフを、他のパッケージで作成し直すということも考えられます。
　�

Rと RStudio におけるグラフ作成環境

 R の主なグラフィックパッケージ
代表的なパッケージ：標準パッケージ graphics、推奨パッケージ lattice、外部パッケージ ggplot2

それぞれのパッケージは異なる設計思想と設計アプローチを持つ
graphics Rの基本的なグラフ描画機能、軽量かつシンプル（base、stats の一部の関数を含む）

 高水準と低水準の関数の組合せで作図し、短いコードで素早くグラフを作成できる
 小規模な解析やシンプルなグラフ作成に適すが、高度なカスタマイズには手間がかかる

lattice 条件付きプロット（カテゴリごとのグラフ分割）に特化
 formula記法による簡潔な記述、トレリスグラフィックスで複数のグラフを同時表示

 多変量データの視覚化、グループ別比較に適す

ggplot2 レイヤーを積み重ねて構築する柔軟で強力なグラフ描画システム
美しく整ったデザインと高いカスタマイズ性
データサイエンスの現場では、標準ツールの一つとして広く使用されている

15

プレゼンターのノート
プレゼンテーションのノート
　本セミナーでは、パッケージ graphics の標準関数を取り上げます。　なお、パッケージ　base, stats の一部の関数を含みます。

2 標準パッケージ graphics の概要

高水準グラフィックス関数
低水準グラフィックス関数

関数 par()によるグラフィックスパラメータの設定

16

標準パッケージ graphics の概要

 パッケージのインストールとロード
標準パッケージ base, stats, graphics

R をインストールするときに、同時にインストールされる
→ ［Pachages］タブのリストに存在

R を起動するときに、自動的にロードされる
→ □にチェックが入る

RStudio の［Pachages］タブを表示
チェックが入っていることを確認
□ base、□ stats、□ graphics

標準パッケージ graphics, base, stats の関数は
R の起動後に直ちに使える

17

チェックが入っている
チェックが入ってない

クリックして開く

プレゼンターのノート
プレゼンテーションのノート
　右に示したように、　RStudio の［Pachages］タブをクリックして開けると、ブルー枠で示した パッケージ graphics、その他に base, stats も確認できます（操作）。
　この [Pachages］タブに表示されているパッケージは、R をインストールするときに、同時にインストールされるパッケージです。また、パッケージ名の左端に付いている□にチェックマークが入っている場合、R 起動時に自動的にロードされるパッケージです。
　graphics、base, stats の□にはチェックマークが入っているので、このパッケージに含まれる関数は R の起動後、直ちに使える「標準関数」です。
　一方、パッケージ lattice は、インストール済みなのでこのリストの中に確認できますが、自動的にロードされていないので、□にチェックが入っていません。

標準パッケージ graphics の概要

グラフ作成用の高水準関数と低水準関数（graphics, base, stats の関数 ）
高水準グラフィックス関数、低水準グラフィックス関数、両者の組合せてグラフを作成

(i) 高水準グラフィックス関数
グラフの骨組みを描画
（図の全体構造を作成）

(ii)低水準グラフィックス関数
装飾やデータの追加

関数 plot() は多機能
渡されたデータの種類に
対応したグラフを描画
ジェネリック関数
（points()、lines()、text()）

18

 低水準グラフィックス関数
主な関数名 パッケージ名 グラフ名（主な用途） 主な関数 追加する要素

散布図、線グラフ、棒グラフ points() 点
箱ひげ図、関数のプロット lines() 線

pairs() graphics 散布図行列 abline() 直線
boxplot() graphics 箱ひげ図 segments() 線分
stripchart() graphics １次元散布図 arrows() 矢印
hist() graphics ヒストグラム rect() 矩形
barplot() graphics 棒グラフ polygon() 多角形
dotchart() graphics Cleveland ドットチャート text() 文字列
mosaicplot() graphics モザイク図 mtext() 余白の文字列
fourfoldplot() stats 4分割プロット legend() 凡例
qqplot() stats ２標本 Q-Q プロット title() タイトル、軸ラベル
qqnorm() stats １標本 Q-Q プロット rug() 軸上のラグ
contour() graphics 等高線プロット axis() 軸
persp() graphics ３次元透視図 box() 箱
image() graphics ヒートマップ grid() グリッド線
curve() graphics 関数のプロット

 高水準グラフィックス関数

plot() base, graphics
stats

プレゼンターのノート
プレゼンテーションのノート
　標準関数には、高水準グラフィックス関数と低水準グラフィックス関数の 2 種類があり、これらの組合せでグラフを描きます。
　高水準グラフィックス関数は、グラフの骨組みを描画する関数で、図の全体構造を作ります。左側の表に示しように、plot() 、hist()、boxplot() など、作成するグラフの種類に対応する関数が用意されています。これらの標準関数は主にパッケージ graphics に属していますが、パッケージ stats　に属する関数もあります。また、関数 plot() は base, stats, graphics のパッケージが関わっています。
　低水準グラフィックス関数は、装飾やデータを追加する関数です。右の表に示したように、points()、lines() など様々な関数があります。高水準関数で描画したグラフに、低水準関数で様々なグラフ要素を追加します。
　このうち、高水準関数 plot() は、散布図、折れ線グラフ、棒グラフ、箱ひげ図など、様々なグラフを描く機能があります。plot() は、渡されたデータの種類に対応して、適したグラフを自動的に判断して描きます。このような機能を持つ関数をジェネリック関数といいます。
　plot() の他に、低水準関数の points()、lines()、text() などがジェネリック関数です。

標準パッケージ graphics の概要

高水準関数と低水準関数（base, stats の一部の関数を含む ）
高水準グラフィックス関数、低水準グラフィックス関数、両者の組合せてグラフを作成

(i) 高水準グラフィックス関数
グラフの骨組みを描画
（図の全体構造を作成）

(ii)低水準グラフィックス関数
装飾やデータの追加

関数 plot() は多機能
渡されたデータの種類に
対応したグラフを描画
ジェネリック関数
（points()、lines()、text()）

19

 低水準グラフィックス関数
主な関数名 パッケージ名 グラフ名（主な用途） 主な関数 追加する要素

散布図、線グラフ、棒グラフ points() 点
箱ひげ図、関数のプロット lines() 線

pairs() graphics 散布図行列 abline() 直線
boxplot() graphics 箱ひげ図 segments() 線分
stripchart() graphics １次元散布図 arrows() 矢印
hist() graphics ヒストグラム rect() 矩形
barplot() graphics 棒グラフ polygon() 多角形
dotchart() graphics Cleveland ドットチャート text() 文字列
mosaicplot() graphics モザイク図 mtext() 余白の文字列
fourfoldplot() stats 4分割プロット legend() 凡例
qqplot() stats ２標本 Q-Q プロット title() タイトル、軸ラベル
qqnorm() stats １標本 Q-Q プロット rug() 軸上のラグ
contour() graphics 等高線プロット axis() 軸
persp() graphics ３次元透視図 box() 箱
image() graphics ヒートマップ grid() グリッド線
curve() graphics 関数のプロット

 高水準グラフィックス関数

plot() base, graphics
stats

R 4.0.0 で、関数 plot() は
パッケージ graphics から
パッケージ base に移動

プレゼンターのノート
プレゼンテーションのノート
　なお、R 4.0.0 で、関数 plot() はパッケージ graphics からパッケージ base に移動しました。通常の使い方で、これを意識する必要はありません。詳しいことは、この後で説明します。
　plot() は「司令塔」であり、plot() がデータの種類に応じて、graphics と stats に属する「具体的な描画関数」を内部で呼び出します。したがって、plot() は base, stats, graphics の３つのパッケージが関わっています。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：グラフィックスパラメータの制御
関数 par()で標準パッケージ graphiecs によるグラフ作成を制御（由来 parameters）
グラフの軸、余白、文字サイズ、色、レイアウトなどのグラフに関する要素を制御
通常、他のパッケージ（lattice, gglot2など）には無効
関数 par()で制御するグラフィックスパラメータの多くは、高水準関数の中でも指定できる

例 描画する色の指定（par() と高水準関数の両方で設定可）
par(col = "blue")・・・・・この関数を実行した後に作成するすべてのグラフに有効
plot(x, y, col = "blue") ・・・このグラフのみに有効（par() の設定に対して優先する）

作図領域の余白を設定（par()のみで設定可、ごく一部の高水準関数で設定可能）
par(mar = c(5, 4, 2, 2)

現在のパラメータの設定内容を一時的に保存、その後、保存したパラメータの設定に復元
current_par <- par(no.readonly = TRUE) → 他のスクリプトの実行 → par(current_par)

ホウキ・アイコン（［Plots］タブ）で規定値に戻る
20

プレゼンターのノート
プレゼンテーションのノート
　標準パッケージ graphicsでは、関数 par() によってグラフィックスパラメータを設定して、グラフ作成の調整を行います。関数名 par はパラメータ（parameters）に由来してています。　
　関数 par() で、グラフの軸、余白、文字サイズ、色、レイアウトなどのグラフに関する様々なグラフィックスパラメータを制御することができます。
　なお、par による設定は標準パッケージ graphics の関数に対してのみ有効であり、他のパッケージ lattice や ggplot2 には使わないことに注意してください。
　このパラメータの中には、関数 par() と高水準関数の両方で制御できる場合があります。一方、par() のみで制御するパラメータもあります。
　たとえば、描画する色を指定する場合、par(col="blue") のように指定します。par() で指定した場合、その指定後に作成するすべてのグラフに有効です。一方、plot(x,y, col="blue") のように指定することができます。plot() の中で指定する場合、そのパラメータの指定内容はそのグラフのみに有効です。plot の設定は、par() の設定を一時的に上書きするので、par() の指定よりも優先します。
　作図領域の余白を設定するには、関数 par() の中で、引数 mar を使います。通常、この設定は高水準関数の中ではできません。だだし、一部の関数では可能です。
　

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：グラフィックスパラメータの制御
関数 par()で標準パッケージ graphiecs によるグラフ作成を制御（由来 parameters）
グラフの軸、余白、文字サイズ、色、レイアウトなどのグラフに関する要素を制御
通常、他のパッケージ（lattice, gglot2など）には無効
関数 par()で制御するグラフィックスパラメータの多くは、高水準関数の中でも指定できる

例 描画する色の指定（par() と高水準関数の両方で設定可）
par(col = "blue")・・・・・この関数を実行した後に作成するすべてのグラフに有効
plot(x, y, col = "blue") ・・・このグラフのみに有効（par() の設定に対して優先する）

作図領域の余白を設定（par()のみで設定可、ごく一部の高水準関数で設定可能）
par(mar = c(5, 4, 2, 2)

現在のパラメータの設定内容を一時的に保存、その後、保存したパラメータの設定に復元
current_par <- par(no.readonly = TRUE) → 他のスクリプトの実行 → par(current_par)

ホウキ・アイコン（［Plots］タブ）で規定値に戻る
21

読み取り専用のパラメータを除いて付値

プレゼンターのノート
プレゼンテーションのノート
　　現在のパラメータを一時的に保存してからパラメータの変更を行い、再度、保存したパラメータの設定に復元することができます。保存には 関数 par()で適当なオブジェクトにパラメータを付値します。元にもどすには、par(オブジェクト) を実行します。
　なお、オフジェクトに付値するときに、引数なしで関数 par()を実行すると、読み取り専用のパラメータも含まれます。このパラメータは変更できないので、これを含めて設定を戻そうとするとエラーになることがあります。したがって、読み取り専用のパラメータを除いて付値するように、no.readonly=TRUE で実行します。
　先ほど説明したように、par() で設定した内容は、[Plots] タブの箒（ホウキ）アイコンで規定値に戻ります。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：グラフィックスパラメータの制御

par() の引数と制御する内容

22

1. プロット領域のレイアウトに関する引数 3. 線のスタイルに関する引数
mfrow, mfcol グラフィックスデバイスの行と列の数 lty 線の種類
mar, mai, oma, omi, omd グラフ作成の余白、外側余白 lwd 線の太さ
mex 余白の文字サイズ係数 col 線の色
fig プロット領域のサイズと位置 4. 点のスタイルに関する引数
2. テキストに関する引数 pch プロットする点の種類
cex テキストの相対的な拡大率 col、bg 点の色、背景色
cex.axis 軸目盛ラベルの文字サイズ係数 5. その他
cex.lab 軸ラベルの文字サイズ係数 las 目盛ラベルの向き
cex.main, cex.sub タイトル,サブタイトルの文字サイズ係数 xaxs, yaxs x軸、y軸のスタイル
font テキストのフォントスタイル xlog, ylog x軸、y軸を対数軸に変換
font.axis, font.lab, font.main, font.sub 各要素のフォントスタイル ann メインタイトルや軸ラベルを表示
col.axis, col.lab, col.main, col.sub 各要素の文字色 new 既存のプロットに新しいプロットを追加

プレゼンターのノート
プレゼンテーションのノート
　関数 par() の主な引数を表にまとめます。その設定できるグラフィックスパラメータは様々です。
　この中で、オレンジ枠で囲ったように、プロット領域のレイアウトについて、詳しく説明します。

標準パッケージ graphics のグラフィックスパラメータ制御

23

(ii) ダウンロードした
R スクリプトファイル

(iv) [Run] アイコンで
1 行ずつ実行

(i) 新規プロジェクト

(iv) コードを 1 行
ずつ実行

(iii) my_base_graphics1.R
のタブを開く (ii) [More file commands]

> [show Folder
in new Window]

(iii)my_base_graphics1.R
クリックして読込

プレゼンターのノート
プレゼンテーションのノート
　RStudio を操作します。
　(i) すでに新しいプロジェクトを立ち上げてあります。ここでは、「my_base_graphics」というプロジェクト名にしてあります。
 (ii) このプジェクトのフォルダに、ダウンロードした R スクリプトファイルを保存します（操作）。
 いろいろな方法がありますが、１つの方法は、[More file commands] のアイコンをクリックして、[show Folder in New Window]を選択し、エクスプローラを起動してプロジェクトのフォルダに R スクリプトファイルをコピーします。
 (iii) 始めに使う R スクリプトファイル「my_base_graphics1.R」をクリックして、[Soruse エディタ]に「my_base_graphics1.R」のタブを開けます（操作）。
　(iv) ここでは、一括してスクリプトを実行するのではなく、[Run]アイコンで１行ずつコードを実行します。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(1) 作図領域の分割
(a)作図領域の分割なしでグラフを配置

24
（my_base_graphics1.R：1-21）

2 4 6 8 10

-1
.5

0.
5

2.
0

plot

Index

rn
or

m
(1

0)

(a) 作図領域の分割なしでグラフを配置

9 行目を
[Run] アイコンで

実行

[Source エディタ] の
スクリーンショット

プレゼンターのノート
プレゼンテーションのノート
　ここから、関数 par() による制御について、実際に操作しながら説明していきます。
　(1) par() の機能の中から、作図領域の分割を取り上げます。
　(a) はじめに、作図領域を分割しない状態でグラフを作成します。
　これ以降、左側に示したように、[Source エディタ]のスクリーンショットで説明します。
　9 行目で、plot() を [Run] アイコンで実行して、右側に示した (a) のグラフを得ます（操作）。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(1) 作図領域の分割
(a)作図領域の分割なしでグラフを配置

25
（my_base_graphics1.R：1-21）

2 4 6 8 10

-1
.5

0.
5

2.
0

plot

Index

rn
or

m
(1

0)

(a) 作図領域の分割なしでグラフを配置

(1)

(1)

(a)

(a)

(a)

自分のメモ書きが可能
・・・・・・・・・・・・

新規に行を追加して
行番号をずらすことはしない

プレゼンターのノート
プレゼンテーションのノート
　なお、スライドに記載してある (1)、(a)、(b)・・・ は、スクリプトに記載してある記号と一致しています。
　これ以降のスライドの表示もすべて同様です。
　このスクリプトの中に、自分でメモ書きすることは可能です。「#」を記入して、その後にコメントを書き込みます。
　ただし、行を追加してコメントを書くことはしないでください。行番号がずれると、スクリプトの行番号と説明の行番号が一致しなくなるので、説明が読みにくくなります。

標準パッケージ graphics のグラフィックスパラメータ制御

26

Zoom アイコン
ウィンドウを開く

ペインの
大きさを調整ウィンドウの

大きさを調整

１つのグラフが
表示 １つのグラフが

表示

プレゼンターのノート
プレゼンテーションのノート
 [plots]タブにグラフが表示されます。適宜、ズームアイコンをクリックして、別ウィンドウにグラフを拡大表示します。[Plots]タブの大きさとズームウィンドウの大きさは独立して設定できます。
　このように、par() の既定値の状態では、[plot]タブに１つのグラフが表示されます。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(1) 作図領域の分割
関数 par()で作図領域を格子状の行と列に分割
引数 mfrow（multi-figure row）：横方向
引数 mfcol（multi-figure column）：縦方向

(b)作図領域を２行３列に分割、横方向に配置
事例：par(mfrow = c(2、3))

27
（my_base_graphics1.R：11-23）

引数 mfrow

(b) 作図領域を２行３列に分割、横方向に配置

プレゼンターのノート
プレゼンテーションのノート
　次に、関数 par() を使って、作図領域を格子状の行と列に分割します。
　関数 par() の引数 mfrow と mfcol を使います。２つの引数の名称は multi-figure row、multi-figure column に由来します。両者の違いは、分割した作図領域に、横方向にグラフを配置するか、縦方向に配置するかです。
　(b) の図のように、2行３列に 6 分割するには、par(mfrow=c(2, 3)) とします。6 個のグラフを同時に表示できます。オレンジの矢印で示したように、グラフは横方向に順序に配置されます。
　12～13 行目で、現在のグラフィックス・パラメータを保存します（操作）。
　14 行目で、関数 par() の引数 mfrow に数値ベクトル c(2, 3) を渡します（操作）。
　16～21 行目で、Run アイコンをクリックしながら１行ずつ実行して、6つのグラフを順番に描きます（操作）。
　[Plots]タブが小さすぎるとエラーになるので、十分な大きさを取ってください。
　23 行目で、パラメータを復元します（操作）。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(1) 作図領域の分割
関数 par()で作図領域を格子状の行と列に分割
引数 mfrow（multi-figure row）：横方向
引数 mfcol（multi-figure column）：縦方向

(c)作図領域を２行３列に分割、縦方向に配置
事例：par(mfcol = c(2、3))

28
（my_base_graphics1.R：25-37）

引数 mfcol

(c) 作図領域を２行３列に分割、縦方向に配置

プレゼンターのノート
プレゼンテーションのノート
　(c) の図のように、mfcol を使うと、作図領域を分割し、縦方向、すなわち列方向にグラフを配置します。
　26～27 行目で現状のパラメータを保存します（操作）。
　28 行目で、関数 par()の引数 mfcol に c(2, 3) を渡して画面分割を設定します（操作）。
　30～35 行目で、Run アイコンをクリックしながら１行ずつ実行して、6つのグラフを順番に描きます（操作）。
　37 行目で、パラメータを復元します（操作）。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(2)作図する領域
 (i) プロット領域（plot region）
 (ii) 作図領域（figure region）
 (iii) デバイス領域（device region）

29
（my_base_graphics1.R：40-55）

コードの
詳細は省略

プレゼンターのノート
プレゼンテーションのノート
　(2) 作図する領域、すなわち [Plots] タブには、(i) プロット領域、(ii) 作図領域、(iii) デバイス領域の３つの領域があります。これを示すために右のグラフを表示します。　
　43～55 行目で、スクリプトを実行して、外部余白と余白を設定し、作図領域を分割します（操作）。
　なお、それぞれのコードの詳細は後で説明するので、ここでは結果のみ説明します。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(2)作図する領域
(i) プロット領域

点、線などが描かれる領域
 (ii) 作図領域

プロット領域＋軸ラベル、
タイトルなどの領域

(iii) デバイス領域
［plots］タブと一致

２種類の余白
 (iv) 余白：作図領域の境界～プロット領域の境界

タイトル、軸ラベル、軸目盛などを表示
下、左、上、右

(v) 外側余白：デバイス領域の境界～作図領域の境界
下、左、上、右

30

(iii) デバイス領域

(ii) 作図領域

(i) プロット領域

(iv) 余白

(v) 外側余白

プレゼンターのノート
プレゼンテーションのノート
　(i) のプロット領域は、グリーンで塗りつぶした部分で、グラフの線や点を表示する領域です。
　(ii) の作図領域は、プロット領域と、その周辺の軸目盛、軸ラベル、タイトルなどを表示する部分を合わせた領域です。
　(iii) のデバイス領域は、作図領域とその周囲のオレンジ枠で示した部分を合わせた全体の領域です。すなわち、[Plots]タブの領域がデバイス領域になります。
　作図領域の境界とプロット領域の境界の間、すなわちブルーの矢印で示した距離が (iv) 「余白」です。タイトルや軸ラベルを表示する領域です。
　オレンジで塗りつぶした部分は、デバイス領域の境界と作図領域の境界の間で、これが (v) 「外側余白」です。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(3) 余白、外側余白、軸
タイトル、横軸と縦軸の軸ラベル、目盛ラベル、
を表示するスペースを勘案して調整

関数 par()での指定方法：par(mar=c(下,左, 上, 右))
 mar ：余白（margin）、行単位（小数点以下有効）
 mai ：余白、インチ単位

 oma ：外側余白（outer margin）、行単位
 omi ：外側余白、インチ単位
 omd ：外側余白、デバイス領域の幅を0～1 で表示

左端が 0、右端が 1
上端が 0、下端が 1
中間の位置は 0.5

31

余白

外側余白

プレゼンターのノート
プレゼンテーションのノート
　(3)余白、外側余白、軸の設定方法について詳しく説明します。
　余白と外側余白の設定には、関数 par() の 5 つの引数を使います。たとえば、par(mar=c(下, 左, 上, 右))のように使います。
　図中のブルーの矢印で示した余白をに、引数 mar、mai で設定します。「ma」 は margin 由来です。mar は行数で、mai はインチで設定します。行数の指定では、小数点以下も有効で、1.3 行という設定も可能です。
　引数 oma、omi、omd で外側余白を設定します。「om」は Outer Margin 由来です。oma は行数で、omi はインチで設定します。
　引数 omd の単位は特殊です。デバイス領域の幅を 0～1 で表して、左側、右側、上側、下側の順序で指定します。すなわち、左端が 0、右端が 1 です。上端が 0、下端が 1 です。それぞれ中間の位置は 0.5 になります。
　これらの引数に、4つの要素から成る数値ベクトルを渡します。４つの数値は、下側、左側、上側、右側の余白の値に並べます。
　これらの設定により、タイトル、x 軸とy 軸のラベルと軸目盛などを表示するスペースを勘案して、余白の幅を調整します。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(3)余白、外側余白、軸
(a) 既定値（デフォルト）の表示、外側余白、軸

32

mar = c(5, 4, 4, 2) + 0.1
行単位

外側余白の既定値は 0

左端が 0、右端が 1

（my_base_graphics1.R：58-65）

余白 5.1

余白 4.1

外側余白

余白 5.1

プレゼンターのノート
プレゼンテーションのノート
　(a) par() のデフォルトの余白と外側余白の状態を確認します。
　61～65 行目で、デフォルトの値、すなわち規定値を表示するために、par("引数の名前") を入力して、左上に示した出力を得ます（操作）。
　par("mar") を入力すると、既定値の余白の行単位の数値 c(5.1, 4.1, 4.1, 2.1) を得ます。これは c(5, 4, 4, 2)＋0.1 行です。
　par("oma") 、par("omi") は 0 です。また、par("omd") は 0, 1, 0, 1 です。すなわち、外側余白の既定値は 0 です。 したがって、通常、デフォルトで作図領域とデバイス領域は一致しています。通常は、外側余白を考慮せず、余白の調整のみを行います。
　そこで、次に余白の設定方法を説明します。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(3) 余白、外側余白、軸
(b) 余白 引数mar で余白を行単位で指定

33

軸
余白

(i) (ii)

(iii)
(iv)

（my_base_graphics1.R：67-87）
欠ける

欠ける

規定値の余白

プレゼンターのノート
プレゼンテーションのノート
　(b) 余白の設定を規定値から変更します。関数 par() の引数 mar で使います。
　68～70 行目でパラメータを保存し、作図領域を 4 分割します（操作）。
　72～73 行目で、関数 plot() により (i) の作図をして、box() で作図領域を枠で囲みます（操作）。
　既定値の余白は、c(5, 4, 4, 2)+0.1 です。この余白の大きさは、タイトル、軸目盛、軸ラベルを表示するスペースを勘案しています。上側の余白は、タイトルがない場合、やや間延びしたグラフになります。
　75～77 行目で、関数 plot() により、余白を c(4,4,4,4) に設定して (ii) のグラフを表示します（操作）。
　全体の余白を狭くすることができます。
　79～85 行目で、関数 plot() により、余白を設定して (iii) と (iv) の作図をして、box() で作図領域を囲みます（操作）。
　(iii) (iv) のように余白を狭くすると、軸のラベルが欠けてしまいます。
　迅速に描くには、タイトルを付けて既定値の (i)で描くことが勧められます。タイトルが無い場合、見易さを考慮するのであれば上の部分の余白は2でもよさそうです。
　87 行目でパラメータを復元します（操作）。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(3) 余白、外側余白、軸
(c) 軸ラベル、目盛ラベル、軸線の位置の設定

par(mgp=c(軸～軸ラベル, 軸～目盛ラベル, 軸～軸線))

34

(i) (ii)

(iii) (iv)軸～軸線 0.5

軸～目盛ラベル 1.5

軸～軸ラベル 3.5

軸
軸線

目盛線

目盛ラベル

余白 5.1軸ラベル

余白 5.1

par(mar = c(5, 4, 4, 2) + 0.1)
par(mgp = c(3.5, 1.5, 0.5))

プレゼンターのノート
プレゼンテーションのノート
　(c) 軸ラベル、目盛ラベル、軸線の位置の設定を取り上げます。関数 par() の引数 mgp で調整します。
　mgp 引数には３要素からなる数値ベクトルを渡します。左下の図のように、プロット領域の端を「軸」、「目盛線」を付けた「軸線」、目盛線に付いた数値を「目盛ラベル」、軸の説明を「軸ラベル」と呼びます。ここでの軸ラベルは「index」です。引数 mgp に渡す数値ベクトルの第１要素が「軸～軸ラベル」、第２要素が「軸～目盛ラベル」、第３要素が「軸～軸線」の距離を表します。
　左の図は、右の図の (iv) のグラフのオレンジ枠の部分を拡大したもので、mar= c(5, 4, 4, 2)+0.1、mgp=c(3.5, 1.0, 0.5) に設定した状態です。
　したがって、左の図で、ブルーの両矢印の「余白」が 5.1、オレンジの両矢印の「軸～軸ラベル」が 3.5、「軸～目盛ラベル」が 1.5、「軸～軸線」が 0.5 です。
　なお、軸ラベルは軸タイトルと呼ぶ場合もあるようです。

標準パッケージ graphics のグラフィックスパラメータ制御

関数 par()：(3) 余白、外側余白、軸
(c) 軸ラベル、目盛ラベル、軸線の位置の設定

35

(i) (ii)

(iii) (iv)

（my_base_graphics1.R：89-109） 軸と軸線が離れる

0 → 0.5

既定値

(i) 既定値

(ii)

(iii)

(iv)

プレゼンターのノート
プレゼンテーションのノート
　90～92 行目 でパラメータを保存し、作図領域を 4 分割します（操作）。
　94～95 行目で、関数 plot() により、既定値の設定で (i) のグラフを表示して、関数 box() で作図領域を枠で囲みます（操作）。
　既定値は c(3, 1, 0) で、「軸～軸ラベル」がやや間延びしたように感じる人もいるかもしれません。
　97～103 行目で、 (ii)(iii) のように、「軸～軸ラベル」の間隔をやや狭くしたグラフを作成します（操作）。
　105～107 行目で、(iv) のように c(3.5, 1.5, 0.5) として「軸～軸線」を 0 から 0.5 にすると、オレンジの枠で示したように軸と軸線が離れた型式のグラフになります（操作）。
　108 行目で、パラメータを復元します（操作）。

3 関数 plot() の使い方

ジェネリック関数の一つ
plot() に渡すデータの種類
plot() の引数によるグラフのカスタマイズ
plot() と低水準グラフィックス関数の組合せ

36

プレゼンターのノート
プレゼンテーションのノート
　はじめに、代表的な標準関数 plot() を取り上げて、その使い方を説明します。
　plot() はジェネリック関数であり、その特有の使い方があります。plot() に渡すデータの種類と描かれるグラフとの関係、plot() の引数によるグラフのカスタマイズ、高水準グラフィックス関数である plot() と低水準グラフィックス関数との組合せについて説明します。

関数 plot() の使い方

37

(i) プロジェクト(v) 前項で使用 (vi) [Run] アイコンで
1 行ずつ実行

(iv) my_plot0.R
このタブが開く

(iii)my_base_graphics2.R
クリックして読込

(ii) ダウンロードした
R スクリプトファイル

プレゼンターのノート
プレゼンテーションのノート
 (i) 前項に引き続き「my_base_graphics」のプロジェクトの中で操作します。
 (ii) [Files]タブを表示させて、ダウンロードした R スクリプトファイルがプロジェクトのフォルダに存在していることを確認します（操作）。
　(iii) その中から、「my_basa_graphics2.R」のスクリプトファイルをクリックします（操作）。
　(iv) 左上のペインにある [Source エディタ]が開き、「my_base_graphics2.R」が表紙されます。このスライドでは、「my_base_graphics2.R」のスクリプトの 1～10 行までを表示しています。3 行目に記したように、事例のサンプルデータはデモ用の人工データです。
 (v) なお、前項で使った「my_base_graphics1.R」も開いています。このまま開けておいて、表示を切り替えてスクリプトを参照することもも可能です。不要であればファイル名の右側にある「×」をクリックして閉じておきます。　
　(vi) この後、[Run]アイコンで 1 行ずつスクリプトを実行していきます。

x1 y1 grp obs
1 2 A1 7
3 4 A1 5
6 5 A1 6
7 4 A1 10
9 7 A1 2

10 11 A2 12
A2 10
A2 5
A2 15

df

関数 plot() の使い方

準備：(1)データ
(a) 数値ベクトル：x1, y2（x1：説明変数、y1：目的変数、対応あり、x1 の値で昇順ソート）
(b) データフレーム：df（grp：因子ベクトル（group）、 obs：数値ベクトル（observation））

群 観測値

38
（my_base_graphics2.R：6-22）

(a) 数値ベクトル (b) データフレーム

対応あり

昇順

プレゼンターのノート
プレゼンテーションのノート
　(1) plot() の操作を行う準備として、plot() に渡すデータを用意します。
　(a) 数値ベクトルを作成します。
　10～11 行目で、関数 c() により、数値ベクトル x1、y1 を作成します（操作）。
　x1, y1 は、ブルーの両矢印で示したように対応があるデータで、x1 は説明変数、y1 は目的変数に相当します。x1 の大きさで昇順にソートしてあります。
　(b) データフレームを作成します。
　15～22 行目で、関数 data.frame()　によりデータフレーム df を作成し、このデータフレームを表型式で表示します（操作）。
　列名 grp は因子ベクトルで、group（群）の略です。列名 obs は数値ベクトルで、observation（観測値）の略です。それぞれランダムに得られており、得られた順序で並べてあります。

関数 plot() の使い方

準備：(1) データ
(c)因子ベクトルと テーブルオブジェクト

gender：因子ベクトル、原因 Male/Female
answer：因子ベクトル、結果 yes/no

tb：テーブルオブジェクト

39
（my_base_graphics2.R：24-36）

因子ベクトル テーブルオブジェクト

（Console の表示）
水準の
順序

集計

gender answer
male yes
male no
male no
male yes

female no
female no
female yes
female no
female no

水準の
順序

プレゼンターのノート
プレゼンテーションのノート
　(c) 因子ベクトルとテーブルオブジェクトを作成します。男性(male) 4人、女性(female) 5人から回答（yes/no）を得た結果です。
　26～29 行目で、関数 factor() により、因子ベクトル gender を作成します（操作）。
　関数 rep() で"male" が 4 つ、"female"が 5 つからなる文字列を作成します。引数 levels で水準の順序を設定します。この順序は、グラフや表を作成したときに、水準の前後の位置、水準の上下の位置に反映します。
　30～34 行目で、因子ベクトル answer を作成します（操作）。
　gender は male／female の　２水準をもつ因子ベクトルです。その回答 answer は yes/no の２水準をもつ因子ベクトルです。
　35～36 行目で、関数 table() により、これらのベクトルをクロス集計して、その結果をオブジェクト tb に付値し、その内容を Console に表示します（操作）。
　関数 factor() の引数 levels で設定した順序が、「male/female」の位置、「yes/no」の位置に反映しています。

関数 plot() の使い方

準備：(1) データ
スクリプトを実行後、［Environment］タブで作成したオブジェクトを確認

40

データフレーム
grp：因子ベクトル
obs：数値ベクトル

因子ベクトル

数値ベクトル

テーブル・オブジェクト

数値

因子 ２水準

システム内
での処理

2 変数ごとに
9 個の観測値

プレゼンターのノート
プレゼンテーションのノート
　［Environment］タブを開いて、これまでに作成したオブジェクトを確認します（操作）。
　df はデータフレームです。2 変数にそれぞれ 9 個の観測値があります。１つ目の grp は Factor(因子ベクトル)で、A1とA2 の２水準をもちます。「w/ 」は「with」の省略です。システム内では「1, 2」の数値で処理されます。２つ目の obs は num(数値ベクトル) で、7, 5, ・・・・・ ５, 15 です。
　gender, answer は Factor(因子ベクトル)です。たとえば、answer は 2 水準「yew/no」をもつ因子ベクトルで、システム内では 1 と 2 で処理されます。
　tb は table(テーブルオブジェクト)です。
　x1,y1 は num(数値ベクトル)で、それぞれ 6 個の数値があります。

準備：(2) 関数 par() による余白と軸のカスタマイズ
par(mar = c(3, 4, 2, 2), mgp = c(1.5, 0.5, 0))
ベクトルの要素（一部）

 mar[2] = 4 ・・・ 左の余白
mar[3] = 2 ・・・ 上の余白
mgp[1]=1.5 ・・・ 軸～軸ラベルの距離
mgp[2]=0.5 ・・・ 軸～目盛ラベルの距離

単位は「行」、小数点のある値でも可

2 4 6 8 10

2
4

6
8

10

x1

y1

関数 plot() の使い方

41
（my_base_graphics2.R：39-43）

mgp[2] = 0.5
軸～目盛ラベル

mgp[1] = 1.5
軸～軸ラベル

目盛ラベル

軸ラベル

軸

作図領域の堺

mar[3] = 2
 余白（上）

mar[2] = 4
余白（左）

プレゼンターのノート
プレゼンテーションのノート
　(2) plot() の操作を行う準備として、関数 par() を用いて、余白と軸のカスタマイズを行います。
　41 行目で、関数 par() により、余白と軸に関するカスタマイズを行います（操作）。
　この事例で、par() の設定値は par(mar = c(3, 4, 2, 2), mgp = c(1.5, 0.5, 0)) です。２つの引数を使います。単位は「行」です。小数点のある値でも設定可能です。
　設定値として、引数 mar に渡したベクトルの要素を取り出すと、左の余白は mar[2] = 4、上の余白は mar[3] = 2 で、オレンジで表示してあります。また、軸～軸ラベルの距離は mgp[1]=1.5、軸～目盛ラベルの距離は mgp[2]=0.5 で、ブルーで表示してあります。

x1 y1
1 2
3 4
6 5
7 4
9 7

10 11

関数 plot() の使い方

関数 plot()の使い方：(3)典型的な例
(a) 関数 plot()のシンプルなコード

(i) plot(x1, y1) ・・・引数の名前を省略（位置引数）
２つの数値ベクトルの順序に注意
先：x 軸に割付、後：y 軸に割付

(ii) plot(x = x1, y = y1) ・・名前付き引数

データを渡すだけのシンプルなコード
外観は自動設定（既定値）
必要な情報はグラフに反映される

42
（my_base_graphics2.R：46-50）

通常の利用方法

通常の利用方法

2 4 6 8 10

2
4

6
8

10

x1

y1

範囲は自動設定

変数名

変数名

範囲は自動設定

形状 pch=1

変数名
オブジェクト名

プレゼンターのノート
プレゼンテーションのノート
　(3) ここから、plot() の典型的な使い方を示します。
　(a) まず、plot() の最もシンプルなコードを示します。
　49 行目 の plot() を実行して、右の散布図を得ます（操作）。
　データである２つの数値ベクトル x1, y1 を plot() に渡します。この順序が重要です。横軸に位置する x1 が先、縦軸に位置する y1 が後です。
　50 行目の　plot() を実行します（操作）。
　49 行目と同じ散布図を得ます。49 行目と 50 行目は同じコードであり、49行目は引数の名前を省略して、位置引数で値を渡しています。50 行目は名前付き引数で値を渡しています。通常はシンプルな位置引数として使います。ただし、名前付き引数であれば記述する順番は自由ですが、位置引数で使う場合は順番に注意が必要です。
　得られた散布図の記号（シンボル、マーカー）は〇で、既定値の pch=1 です。x 軸と y 軸の軸ラベルは、ベクトルの変数名が自動的に表示されます。　x 軸の範囲は 2～10、y 軸の範囲は 1～10 です。これは、データに合わせて、R が適当に決めた範囲です。
　したがって、x1 と y1 の値を渡すだけで、他の設定をしなくても、自動的に必要最小限の情報はグラフに反映されます。

関数 plot() の使い方

関数 plot()の使い方：(3) 典型的な例
(b) 引数によるカスタマイズと低水準関数との組合せ

43

0 2 4 6 8 10 12
0

2

4

6
8

10

12
タイトル

横軸

縦
軸

0 2 4 6 8 10 12
0

2

4

6

8

10

12
タイトル

横軸

縦
軸

main="タイトル"

las = 1

ylab ="縦軸"

pch =21
col = "blue"

xlim = c(0, 12)

（my_base_graphics2.R：46-67）

●、〇、■、□などの名称
ここでは、「記号」を主として使用
シンボル、マーク、マーカー、

プレゼンターのノート
プレゼンテーションのノート
　(b) plot() の中で引数によるカスタマイズを行い、低水準関数との組合せてグラフ要素を追加します。
　前のスライドでは、49～50 行目で、関数 plot() の最もシンプルなコードにより散布図を作成しました。
　53～62 行目で、同じ散布図を描き、さらに引数でカスタマイズします（操作）。
　位置引数で、plot() に数値ベクトル x1, y1 を渡します。
　引数 xlim と ylim に、x 軸と y 軸の範囲を渡します。
　引数 main にメインタイトルの文字列を渡します。引数 xlab で x 軸のラベルの文字列を渡します。引数 ylab で y 軸のラベルの文字列を渡します。
　引数 pch と col を使い、記号の種類を pch=21 の●、色を col = "blue" ブルーに指定します。
　引数 las に 1 を渡して、目盛ラベルを水平に位置させます。
　なお、グラフに使う●、〇、■、□などは、シンボル、マーク、マーカーなどと呼ばれます。ここでは、主として「記号」とします。

0 2 4 6 8 10 12
0

2

4

6

8

10

12
タイトル

横軸

縦
軸

関数 plot() の使い方

関数 plot()の使い方：(3) 典型的な例
(b) 引数によるカスタマイズと低水準関数との組合せ
高水準関数 plot()と低水準関数 abline() による回帰直線の追加
次の高水準関数の実行まで、低水準関数による追加が可能

44
（my_base_graphics2.R：52-67）

回帰直線

低水準関数
abline()

高水準関数
plot()

回帰分析

プレゼンターのノート
プレゼンテーションのノート
　前のスライドでは、53～62 行目で、高水準グラフィックス関数 plot() により散布図を描きました。この散布図に、低水準グラフィックス関数 abline() を使って回帰直線を追加します。
　64 行目で、lm 関数により回帰分析を行い、その結果をオブジェクト lm_out　に付値します（操作）。
　66～67 行目で、オブジェクト lm_out を関数 abline() に渡して、散布図に回帰直線を追加します（操作）。
　lm_out は線形モデルオブジェクトです。後で詳しく説明します。
　このように、高水準関数と低水準関数の組合せにより、グラフを作成していきます。 さらに、別の低水準グラフィックス関数を実行すると、この散布図に様々な要素を追加できます。次に高水準グラフィックス関数か実行されるまで、追加することができます。

関数 plot() の使い方

関数 plot()の使い方：(3) 典型的な例
(i)関数 plot() に渡すデータの種類に対応

データの種類（クラス）に応じてグラフを選択
（ジェネリックス関数、plot() の特徴）

(ii) 関数 plot() の引数に値を渡してカスタマイズ
col（色）、lty（線種）、xlab（x軸ラベル）など

(iii) 関数 plot() と低水準関数の組合せ
回帰直線、凡例、注釈など
グラフ要素の追加

45

plot(データ, 引数) ＋ 低水準関数 グラフ（散布図、線グラフ、モザイク図など）

(ii)グラフのカスタマイズ (iii)グラフ要素の追加

(i) 関数 plot() に渡すデータ
因子ベクトル、１個、２個
数値ベクトル、１個、２個
因子ベクトル 1 個 + 数値ベクトル 1 個
データフレーム
マトリックス（行列）
時系列オブジェクト（ts 型オブジェクト）
線形モデルオブジェクト（lm 型オブジェクト）
関数オブジェクト（function 型オブジェクト）
分割表オブジェクト（table 型オブジェクト）

プレゼンターのノート
プレゼンテーションのノート
　ここまで説明した内容を、下段にイメージ図で示します。関数 plot() にデータを渡して基本的なグラフを作成し、引数に値を渡してグラフをカスタマイズします。さらに、低水準関数を組合せてグラフに様々な要素を追加します。これにより、散布図、線グラフ、モザイク図などを作成できます。
　(i) 関数 plot() に渡すことができるデータは、ここに示したように因子ベクトル、数値ベクトル、数値ベクトル・・・分割表オフジェクトなど様々です。渡すデータの種類に応じてグラフの種類が選択されるます。これが、ジェネリックス関数であり、plot() の特徴です。 　　　
　(ii) 引数に渡されるデータにより、グラフをカスタマイズします。col（色）、lty（線種）、xlab（x 軸ラベル）などです。
 (iii) plot() の実行後、低水準グラフィックス関数によるグラフ要素の追加を行います。回帰直線、凡例、注釈など様々なグラフ要素があります。　
　(i) はジェネリックス関数である plot() の特徴です。(ii) と (ii) はすべての高水準関数に共通して該当します。
　ここから、(i)(ii)(iii) の順に説明していきます。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(4) 因子ベクトル１個（棒グラフ）
１つの因子ベクトル（因子変数）を集計した結果として棒グラフを得る

plot(f)・・・f：因子ベクトル
水準数２→ ２本の棒グラフ、水準数３ → ３本の棒グラフ

データフレームの１列（因子ベクトル）の場合
plot(df$f)

46
（my_base_graphics2.R：70-75）

度数表

（Console の表示）

(4) 棒グラフ
answer

yes
no
no
yes
no
no
yes
no
no no yes

0
2

4
6

集計

プレゼンターのノート
プレゼンテーションのノート
　まず、「データの種類」 について、スクリプトファイルの番号に合わせて (4) から始めます。
　(4) 1 個の因子ベクトル f を plot() に渡すと、水準ごとに集計した棒グラフを得ます。
　72 行目で、plot() により、因子ベクトル answer を渡して、右に示した (4) 棒グラフを得ます（操作）。
　74 行目で、関数 table() により、因子ベクトル answer から水準ごとの度数表に集計して tb2 に付値します（操作）。
　75 行目で、関数 print() により、tb2 の内容を Console に表示します（操作）。
　因子ベクトル answer を集計して no が 6 個、yes が 3 個のテーブルオブジェクト tb2 を得ます。answer は２水準なので２本の棒グラフになります。３水準であれば、3 本の棒グラフになります。
　仮に、データフレームの中にある 1 列の因子変数をつかう場合、df$g のように、ドルマークでオブジェクト名と列名を結んで関数 plot　に渡します

　

関数 plot() に渡すデータ：(5) 数値ベクトル１個（インデックスプロット）
１つの数値ベクトル（数値変数）を渡すと、
行番号（インデックス）を x 軸に割当て、
数値変数を y軸に割当てたグラフを得る

→ インデックスプロット
plot(y1) ・・・plot(y1, type = "p")

関数 plot() の使い方：データの種類

47

行番号
（インデックス）

（my_base_graphics2.R：78-88）

既定値
省略可

インデックスとは
データを並べたときの
順番（行番号）

index y1
1 2
2 4
3 5
4 4
5 7
6 11

1 2 3 4 5 6

2
4

6
8

Index

y1

インデックスプロット
（type = "p"）

プレゼンターのノート
プレゼンテーションのノート
　(5) 数値ベクトルが 1 個の場合、インデックスプロットを得ます。
　１つの数値ベクトルを plot() に渡すと、その値を y 軸に割当てます。x 軸には、インデックスが使われます。インデックスは、データを並べたときの順番であり、行番号です。特殊な場合、列番号を使うこともあり得ます。このインデックスを横軸に割当てたグラフを「インデックスプロット」といいます。
　plot(y1, type = "p") のように記述して、右の散布図を得ます。ただし、引数 type の規定値（デフォルト）は "p"であるため、引数を省略できます。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(5) 数値ベクトル１個（インデックスプロット）
１つの数値ベクトル（数値変数）を渡すと、
行番号（インデックス）を x 軸に割当て、
数値変数を y軸に割当てたグラフを得る

→ インデックスプロット
plot(y1) ・・・plot(y1, type = "p")

48
（my_base_graphics2.R：78-88）

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

type = "p"（既定値） type = "h"

type = "l" type = "c"

type = "o" type = "s"

インデックス
既定値
省略可

プレゼンターのノート
プレゼンテーションのノート
　引数 type に渡す文字は、"p"～"n" まで 9 種類です。この指定によって、右のように異なるグラフを得ます。縦軸に数値ベクトルの値を取り、横軸はインデックスを取ります。
　引数 type の規定値は "p" であるため、type を省略すると type="p" であると見なされます。　
　

関数 plot() に渡すデータ：(5) 数値ベクトル１個（インデックスプロット）
１つの数値ベクトル（数値変数）を渡すと、
行番号（インデックス）を x 軸、
数値変数を y軸にプロットしたグラフを得る

→ インデックスプロット

関数 plot() の使い方：データの種類

49
（my_base_graphics2.R：78-88）

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

type = "p" 散布図
（既定値、省略可）

type = "h"：線グラフ
（ヒストグラム風）

各点から
下ろした垂線

プレゼンターのノート
プレゼンテーションのノート
　80 行目で、plot() により、右上の散布図を得ます（操作）。
　type="p" を省略してあります。
　81 行目で、plot() に type="h" を渡して右のヒストグラム風の線グラフを得ます（操作）。
　各点から横軸に垂線を下ろしたグラフです。

関数 plot() に渡すデータ：(5) 数値ベクトル１個（インデックスプロット）
１つの数値ベクトル（数値変数）を渡すと、
行番号（インデックス）を x 軸、
数値変数を y軸にプロットしたグラフを得る

→ インデックスプロット

関数 plot() の使い方：データの種類

50
（my_base_graphics2.R：78-88）

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

type = "l" 線グラフ

type = "c"：線グラフ
（線分）

プレゼンターのノート
プレゼンテーションのノート
　82 行目で、plot() に type="l" を渡して右上の折れ線グラフを得ます（操作）。
　83 行目で、plot() に type="c" を渡して右下の線分の線グラフを得ます（操作）。

関数 plot() に渡すデータ：(5) 数値ベクトル１個（インデックスプロット）
１つの数値ベクトル（数値変数）を渡すと、
行番号（インデックス）を x 軸、
数値変数を y軸にプロットしたグラフを得る

→ インデックスプロット

関数 plot() の使い方：データの種類

51
（my_base_graphics2.R：78-88）

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

type = "o" 線グラフ
（点の上に線）

type = "b"：線グラフ
（点と線分）

プレゼンターのノート
プレゼンテーションのノート
　84 行目で、plot() に type="o" を渡して、右上の線グラフを得ます（操作）。
　点の上に線を重ねた折れ線グラフです。
　85 行目で、plot() に type="b" を渡して、右下の線グラフを得ます（操作）。
　点と線分の折れ線グラフです。

関数 plot() に渡すデータ：(5) 数値ベクトル１個（インデックスプロット）
１つの数値ベクトル（数値変数）を渡すと、
行番号（インデックス）を x 軸、
数値変数を y軸にプロットしたグラフを得る

→ インデックスプロット

関数 plot() の使い方：データの種類

52
（my_base_graphics2.R：78-88）

1 2 3 4 5 6

2
4

6
8

Index

y1

1 2 3 4 5 6

2
4

6
8

Index

y1

type = "s" 階段グラフ
（水平→垂直）

type = "S"：階段グラフ
（垂直→水平）

水平→垂直→水平

垂直→水平→垂直

プレゼンターのノート
プレゼンテーションのノート
　86 行目で、plot() に type="s" を渡して、右上の階段グラフを得ます（操作）。
　小文字 s の場合、水平の線から始まり、水平→垂直→水平の順に描かれる階段グラフを得ます。
　87 行目で、plot() に type="S" を渡して、右下の階段グラフを得ます（操作）。
　大文字 S の場合、垂直の線から始まり、垂直→水平→垂直の順に描かれる階段グラフを得ます。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(5) 数値ベクトル１個（インデックスプロット）
１つの数値ベクトル（数値変数）を渡すと、
行番号（インデックス）を x 軸、
数値変数を y軸にプロットしたグラフを得る

→ インデックスプロット

53

1 2 3 4 5 6

2
4

6
8

Index

y1

type = "n"

プロットなし
枠のみ

type = "n" のグラフの場合、
この空のグラフにグラフ要素を追加して
グラフを描く

（my_base_graphics2.R：78-88）

プレゼンターのノート
プレゼンテーションのノート
　88 行目で、plot() に type="n" を渡して、右のグラフを得ます（操作）。
　枠のみのグラフになります。この後で、高水準関数や低水準関数でグラフの要素を追加していきます。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(6) 因子ベクトル２個（スパインプロット）
２つの因子ベクトルを渡すとスパインプロットを得る → spineplot() の項で説明
plot(gender, answer)、plot(answer ~ gender)

54
（my_base_graphics2.R：91-95）

(6) スパインプロット

gender

an
sw

er

male female

ye
s

no

0.
0

0.
4

0.
8

縦軸を割合とした
積上げ棒グラフの形状

順序

順序

プレゼンターのノート
プレゼンテーションのノート
　(6) 因子ベクトルが２つの場合、スパインプロットを得ます。
　２つ因子ベクトルを関数 plot() に渡す場合、渡す式は、「gender, answer」「answer~gender」の形です。gender が横軸で説明変数、answer が縦軸で応答変数になります。水準「male/female」の順序、「yes/no」の順序は、関数 factor の引数 levels で指定した順序か反映します。
　93 行目で、plot() に「gender, answer」の形で渡して、右の (6) スパインプロットを得ます（操作）。
　94 行目で、plot() に、「answer~gender」の形で渡して、右の (6) スパインプロットを得ます（操作）。
　スパインプロットは、モザイク図に似ていますが、モザイク図はタイル状のグラフになるのに対して、スパインプロットは縦軸を割合とした積上げ棒グラフの形状になります。詳しい説明は、関数 spineplot() のところで行います。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(7) 数値ベクトル２個（散布図）
２つの数値ベクトル（数値変数）を渡すと、
それぞれ x 軸と y軸にプロットした散布図を得る

plot(x1, y1) plot(y1 ～ x1) type = "p" は省略可
データフレームの場合（後述）

plot(dfx, dfy) plot(y ~ x, data = df)

55
（my_base_graphics2.R：97-109）

type = "p" 散布図

2 4 6 8 10

2
4

6
8

x1

y1

x1 y1
1 2
3 4
6 5
7 4
9 7

10 11

対応あり

プレゼンターのノート
プレゼンテーションのノート
　(7) 数値ベクトルが２つの場合、散布図を得ます。
　２つの数値ベクトル plot() に渡すと、その値を x 軸と y 軸にプロットした散布図を得ます。
　「x1, y1」 、「y1 ~ x1」のいずれかの形で関数 plot() に渡します。
　99 行目で、plot() に、「x1, y1」の形で渡して、右の散布図を得ます（操作）。
　100 行目で、plot() に、「y1~x1」の形で渡して、右の散布図を得ます（操作）。
　この場合、1 個の数値ベクトルの場合と同様に、既定値である引数 type="p" が省略されています。
　データフレームの場合、df$x、df$y を関数 plot() に渡すか、y~x を渡して data = df のようにオブジェクト名を引数 data　に渡します

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(7) 数値ベクトル２個（棒グラフ、線グラフなど）
２つの数値ベクトル（数値変数）を渡すと、
それぞれ x 軸と y軸にプロットした散布図を得る

plot(x1, y1, type = "h") plot(y1 ～ x1, type = "h")

56
（my_base_graphics2.R：97-109）

2 4 6 8 10

2
4

6
8

x1

y1

2 4 6 8 10

2
4

6
8

x1

y1

2 4 6 8 10

2
4

6
8

x1

y1

2 4 6 8 10

2
4

6
8

x1

y1

棒グラフ（"h"） 線グラフ（"l"）

線グラフ（ "o"） 階段グラフ("S")

プレゼンターのノート
プレゼンテーションのノート
　２つの数値ベクトル、すなわち数値変数を plot() に渡して、引数 type に "h"、"l"、"c"、"o"、"b"、"s"、"S" を渡すと、ヒストグラフ風の棒グラフ、線グラフ、階段グラフを得ます。その中で、"h"、"l"、"o"、"S" のグラフを右側に示します。
　102～109 行目で、plot() により、右のグラフを得ます（操作）。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(8) 因子ベクトル１個、数値ベクトル１個
(a) 数値ベクトル～因子ベクトル → 箱ひげ図
(a') 因子ベクトル, 数値ベクトル → 箱ひげ図
(b) 因子ベクトル～数値ベクトル → スピノグラム
(c) 数値ベクトル, 因子ベクトル → １次元散布図

(a) (a') データフレームの場合（右表）
plot(obs ～ grp, data = df) plot(dfgrp, dfobs)

57

(a) (a') 箱ひげ図

（my_base_graphics2.R：112-119）

grp obs
A1 7
A1 5
A1 6
A1 2
A1 10
A2 4
A2 15
A2 12
A2 10

df

A1 A2

2
4

6
8

10
12

14

grp

ob
s

プレゼンターのノート
プレゼンテーションのノート
　(8) 因子ベクトル１個と数値ベクトル１個を plot() に渡す場合、その渡し方で三種類のグラフを得ます。
　事例として、右側の表に示したデータフレームの場合を想定します。
　(a) 「数値ベクトル～因子ベクトル」と、(a') 「因子ベクトル, 数値ベクトル」 の場合、右側に示した箱ひげ図を得ます。
　114～115 行目で、plot() により、(a)(a')　の箱ひげ図を得ます（操作）。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(8) 因子ベクトル１個、数値ベクトル１個
(a) 数値ベクトル～因子ベクトル → 箱ひげ図
(a') 因子ベクトル, 数値ベクトル → 箱ひげ図
(b) 因子ベクトル～数値ベクトル → スピノグラム
(c) 数値ベクトル, 因子ベクトル → １次元散布図

(b) データフレームの場合（右表）
plot(g ～ y, data = df)

58
（my_base_graphics2.R：112-119）

(b) スピノグラム

grp obs
A1 7
A1 5
A1 6
A1 2
A1 10
A2 4
A2 15
A2 12
A2 10

df

obs

gr
p

2 4 6 8 10 16

A
2

A
1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

プレゼンターのノート
プレゼンテーションのノート
　(b) 「因子ベクトル～数値ベクトル」を渡すと、スピノグラムを得ます。スピノグラムの詳しい説明は、関数 spineplot()　の所で行います。
　117 行目で、plot() により、(b) スピノグラムを実行します（操作）。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(8) 因子ベクトル１個、数値ベクトル１個
(a) 数値ベクトル～因子ベクトル → 箱ひげ図
(a') 因子ベクトル, 数値ベクトル → 箱ひげ図
(b) 因子ベクトル～数値ベクトル → スピノグラム
(c) 数値ベクトル, 因子ベクトル → １次元散布図

(c) データフレームの場合（右表）
plot(dfy, dfg)

59
（my_base_graphics2.R：112-119）

(c) １次元散布図

grp obs
A1 7
A1 5
A1 6
A1 2
A1 10
A2 4
A2 15
A2 12
A2 10

df

2 4 6 8 10 14

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

df$obs

df
$g

rp

プレゼンターのノート
プレゼンテーションのノート
　(c)　「数値ベクトル, 因子ベクトル」を渡すと、右側に示した１次元散布図を得ます。この場合は横向きです。
　119 行目で、plot() により、(c) １次元散布図を得ます（操作）。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(9) 複数の数値ベクトル（散布図行列）
複数の数値ベクトルは、１つのデータフレームにまとめて plot() に渡す
（３つの数値ベクトルをそれぞれ渡すことは不可）

散布図行列（総当たりの散布図）を得る
plot(df3)

60

yy1, yy2, yy3
対応がある
数値データ

（my_base_graphics2.R：122-129）

yy1

12
18

24

2 6 10

12 18 24

yy2

2
6

10

4 8 12

4
8

12

yy3

(9) 散布図行列

yy1 yy2 yy3 yy1 yy2 yy3
1 11 12 1 11 12
3 15 10 3 15 10

・・・ ・・・ ・・・ ・・・ ・・・ ・・・

7 21 3 7 21 3
10 25 3 10 25 3

df3

プレゼンターのノート
プレゼンテーションのノート
　(9)３個以上の数値ベクトルを関数 plot() に渡す場合、３個以上の数値ベクトルを plot() に渡すことはできないので、１つのデータフレームにまとめます。この３個の数値ベクトルは「対応があるデータ」です。このデータフレームを plot() に渡すと、散布図行列を得ます。
　124～127 行目で、対応のある 3 つの数値ベクトルを作成し、これを合わせて３列の数値型から成るデータフレーム df3 を得ます（操作）。
　129 行目で、このデータフレーム df3 をそのまま 関数 plot() に渡して、(9) 散布図行列を得ます（操作）。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(10) データフレーム（記述方法）
(i)「データフレーム名 $ 列名」の利用

最も明示的で、どのデータフレームの列かが一目で分かる
コードが冗長になりやすい、オブジェクトを短い名称（df など）に変更

(ii) 関数with()の利用 （推奨）
データフレームを一度だけ指定すれば、（）中で列名をそのまま使える
一時的に環境を切り替える仕組み

(iii) 引数 dataの利用 （推奨）
formula インターフェイスでデータを指定、簡便な記述方法
使える関数は限られる（plot(), boxplot(), stripchart(), coplot(), mosaicplot() など）

(iv) 関数 attach()、detach()（非推奨）
データフレームの列を直接オブジェクト名として参照可能
不具合の発生が懸念されるため非推奨（他人のスクリプトを読むための知識）

61

plot(dfx, dfy)

with(df, plot(x, y))

attach(df)
plot(x, y)
detach(df)

plot(y ~ x, data = df)

プレゼンターのノート
プレゼンテーションのノート
　(10) これまで、データフレームを plot() に渡す使い方について、いつくか示してきました。それを整理します。
　データフレームを plot() に渡す場合、(i)～(iv) の記述方法があります。
(i) データフレーム名 $ 列名 として、表す方法です。メリットは、最も明示的で、どのデータフレームの列であるか一目で分かります。デメリットとして、コードが冗長になりやすいことです。データフレームのオブジェクト名を df など短いオブジェクトに付値して使うことも１つの方法です。
(ii) 関数 with() を使う方法です。データフレームを一度だけ指定すれば、（）中で列名をそのまま使えます。
(iii) 引数 data を使います。ここまで、何回か事例を説明しました。簡便な方法ですが、使える高水準関数は限られます。
(iv) 関数 attach() と detach() を使う方法です。たとえば、attach(df) と detach(df) の間に記述する場合、df を省略できます。attach() の実行後、必ずdetach() を実行しなければなりません。ただし、この方法は、不具合の発生が懸念されるため、非推奨です。他の人が作成したスクリプトを読むときに、必要になる知識です。
　(iii) が使える関数では、この方法が推奨されます。使えない場合、簡単な表記の場合は (i)、複雑な表記の場合は (ii) を使います。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(10) データフレーム（記述方法）
(a)「データフレーム名 $ 列名」の利用
(b) 関数with()の利用
(c) 引数 dataの利用

62
（my_base_graphics2.R：132-146）

A1 A2

2
4

6
8

10
14

x

y

A1 A2

2
4

6
8

10
14

grp

ob
s

(a)
(c)

(b)
関数 with の { } 内に、
複数行のコードを記述

プレゼンターのノート
プレゼンテーションのノート
　(a) 「データフレーム名 $ 列名」の記述方法の具体例です。
　135 行目で、plot() により (a) のグラフを得ます（操作）。�　(b) 関数 with()　を使う記述方法の具体例です。
　138～141 行目で、関数 with() の中で、plot() と abline() を実行して (b) のグラフを得ます（操作）。
　143 行目のように、単純な使い方もできます（操作）。
　(c) 引数 data を使う記述方法の具体例です。
　146 行目で、plot() の 引数 data を利用して、(a) と同じグラフを得ます（操作）。�

Time

ts
_o

ut

2020 2022 202

5
6

7
8

9
10

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(11) 時系列オブジェクト（ts 型オブジェクト）
時系列オブジェクト（ts：Time Series）：関数 ts() などで作成された時系列データを付値

関数 ts() の引数の使い方
data：数値ベクトルまたはマトリックス
start：開始時点（例：c(2020, 1) は 2020年1月）
end ：（任意）終了時点。必要な場合のみ指定
frequency：年間の観測回数、12(毎月)、4(四半期)、1(年次)等

横軸に時間、縦軸に値、時間経過に伴うデータの変動を可視化

63

(11) 時系列グラフ

（my_base_graphics2.R：149-154）

プレゼンターのノート
プレゼンテーションのノート
　(11) 時系列オブジェクトは、時系列データ（Time Series、すなわち ts） を扱うためのオブジェクトで、関数 ts() の結果を付値して得られます。これを plot() に渡すと、 右に示した時系列グラフを得ます。折れ線グラフの一種です。
　関数 ts() は、数値ベクトルを元にして、引数 start と引数 frequency で設定します。引数 start には、開示時点を c(開始年, 開始月) の形で渡します。引数 frequency には、年間の観測回数を渡します。すなわち、毎月の観測は 12、四半期の観測は 4、年１回の観測は 1 を指定します。
　151～152 行目で、関数 ts() により、時系列オブジェクト ts_out を作成します（操作）。
　2020年1月から年 1 回の時系列データになります。
　154 行目で、時系列オブジェクト ts_out を関数 plot() に渡すと、右に示す時系列グラフを得ます（操作）。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(12) 線形モデルオブジェクト（lm 型オブジェクト）
線形モデルオブジェクト（lm：Linear Model）：関数 lm() による回帰分析の結果を付値

関数 lm() の使い方
lm_out <- lm(y ~ x) y：目的変数、x：説明変数

残差診断図
モデルの当てはまり、誤差の正規性や等分散性を可視化
「4.5 回帰分析適用上の諸問題 Rの補足」参照

64
（my_base_graphics2.R：157-164）

2 4 6 8

-2
0

1
2

Fitted values

R
es

id
ua

ls

Residuals vs Fitted
6

4

2

-1.0 0.0 1.0

-1
.5

0.
0

1.
0

2.
0

Theoretical Quan

S
ta

nd
ar

di
ze

d
re

Q-Q Residuals
6

4

2

2 4 6 8

0.
0

0.
4

0.
8

1.
2

Fitted values

S
ta

nd
ar

di
ze

d
re

si
du

al
s Scale-Locatio

6
4

2

0.0 0.2 0.4 0.6

-1
0

1
2

Leverage

S
ta

nd
ar

di
ze

d
re

Cook's distance
1

0.5

Residuals vs L
6

4

1

(12) 残差診断図

プレゼンターのノート
プレゼンテーションのノート
　(12) 線形モデルオブジェクトは、関数 lm() の結果を付値したオブジェクトです。これを関数 plot() に渡して、残差診断図を得ます。
　160 行目で、関数 lm() により、目的変数の数値ベクトル y1 と説明変数の数値ベクトル x1 を「~」チルダで結んで回帰分析を行い、その結果をオブジェクト lm_out に付値します（操作）
　162 行目で、par() により、作図領域を 2×2 の四分割します（操作）。
　163 行目で 線形モデルオブジェクト lm_out を plot() に渡して、右に示した４つの診断グラフを得ます（操作）。
　グラフの内容の詳細は省略します。「4.5　回帰分析適用上の諸問題　Rの補足」を参照してください。
　164 行目で、作図領域を元に戻します（操作）　

https://mkkmkk.com/wp-content/uploads/Green1-4-5R.pdf
https://mkkmkk.com/wp-content/uploads/Green1-4-5R.pdf
https://mkkmkk.com/wp-content/uploads/Green1-4-5R.pdf
https://mkkmkk.com/wp-content/uploads/Green1-4-5R.pdf
https://mkkmkk.com/wp-content/uploads/Green1-4-5R.pdf

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(13) 関数オブジェクト（function型オブジェクト）
関数オブジェクト：関数 function() でユーザーが定義した関数

sin(), cos() などの関数

関数 function() の使い方

例 1： １次回帰式の値を返す関数（引数１個 x）
mod1 <- function(x) x * 5.2 + 1.0
mod1(5) は 27.0 を返す

例 2：１次回帰式の値を返す関数（引数２個 x, a）
mod2 <- function(x, a) x * (-5.2) + a

 mod2(2, 1) は 2 * (-5.2) + 1 = -9.4 を返す

65

プレゼンターのノート
プレゼンテーションのノート
　(13)　関数オブジェクトは、関数 function() で定義したユーザー定義関数を付値したオブジェクトです。また、　sin(), cos() などの関数です。　　
　例 1 のように、x に対する y を返す１次関数を定義します。このオブジェクト名を mod1 とします。この関数に 5 を渡すと、27.0 が返ります。
　例 2 のように、関数 mod2 を定義します。引数は x と a の２つです。mod2(2, 1) を実行すると -9.4　が返ります。
　本来は、もっと複雑な関数を定義して利用しますが、デモンストレーション用の極めて簡単な例です。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(13) 関数オブジェクト（function型オブジェクト）
関数 function() でmod1、mod2 を定義

(a) mod1 <- function(x) x * 5.2 + 1.0 ・・・・引数 1 つ
(b) mod2 <- function(x, a) x * (-5.2) + a・・・引数 2 つ

関数 plot() にmod1, mod2 を渡すと関数のグラフを得る
（関数 curve() を使う方法もある）

curve(mod2(x, b = 1.0), from = 15, to = 25)

66
（my_base_graphics2.R：167-178）

(a)引数が１つのユーザー定義関数
mod1

(b)引数が２つのユーザー定義関数
mod2

プレゼンターのノート
プレゼンテーションのノート
　関数オブジェクトを plot() に渡すと、関数をプロットしたグラフを得ます。
　(a) 引数が 1 つの 1 次関数のグラフを得ます。
　170 行目で、ユーザー定義関数 mod1 を作成します（操作）。
　172 行目で、mod1 を plot() に渡して、右上の関数のグラフを得ます（操作）。
　この定義した関数の引数は説明変数 x の 1 つだけで、これが x 軸に割当てられます。
　(b) 引数が 2 つの 1 次関数のグラフを得ます。
　175 行目で、関数オブジェクト mod1 を 作成します（操作）。
　177 行目で、mod2 を plot() に渡して右下のグラフを得ます（操作）。
　なお、関数 curve() を使うこともできますが、この後で説明します。

関数 plot() の使い方：データの種類

関数 plot() に渡すデータ：(14) 分割表オブジェクト（table 型オブジェクト）
分割表オブジェクト：table() , xtabs()などで集計された

クロス集計表（分割表）
関数 table() による因子ベクトルの集計

(a) gender の集計→ tb3（度数表）→ 棒グラフ
(b) gender と answer のクロス集計→tb4（分割表）→モザイク図

67
（my_base_graphics2.R：181-193） gender

an
sw

er male female

no
ye

s

0
2

4
6

answer

tb
3

no yes

(a) 棒グラフ (b) モザイク図

プレゼンターのノート
プレゼンテーションのノート
　(14) 分割表オブジェクトは、関数 table()、xtabs()　で集計した結果を付値したオブジェクトです。このオブジェクトを plot() に渡して、棒グラフあるいはモザイク図を得ます。
　(a) 1つの因子ベクトル amswer を集計した度数表から棒グラフを得ます。
　184 行目で、因子ベクトル answer の集計を関数 table() で行い、結果を tb3 に付値して分割表オブジェクトを作成します（操作）。
　因子ベクトル answer は yes と no から成ります。
　186 行目で tb3 を表示すると、[Console] に右上に示した度数表を得ます（操作）。
 187 行目で、tb3 を plot() に渡して (a) の棒グラフを得ます（操作）。
　(b) 2つの因子ベクトル gender と　answer をクロス集計した分割表オブジェクトからモザイク図を得ます。
　190 行目で、因子ベクトル gender と answer のクロス集計を行い、その結果を tb4 に付値して分割表オブジェクトを得ます（操作）。
　192 行目で、tb4 を表示すると、[Console] に右上に示した分割表を得ます（操作）。
　193 行目で、tb4 を 関数 plot() に渡して (b) のモザイク図を得ます（操作）。

関数 plot() の使い方：引数

plot() 関数の引数
関数 plot() には多くの引数がある（見るためのグラフを描画するのであれば使用は限定的）
他の graphics 関数も同様の引数をもつ（matpliot、barplot、boxplot()、stripchart() など）

68

主な引数 機能（引数に渡す値） 規定値
x, y プロットするデータ
type プロットの種類、点、線など（"p", "l", "b", "c", "o", "h", "s", "S", "n"） "p"
xlim, ylim x軸・y軸の範囲、ベクトルで指定（例 xlim = c(0, 100)） NULL
log 軸を対数目盛に変換（"", "x", "y", "xy"） ""
main, sub メインタイトルの文字列、サブタイトルの文字列 NULL
xlab, ylab x軸・y軸のラベルの文字列 NULL
axes 軸の表示の有無（TRUE, FALSE） TRUE
xaxt, yaxt 軸の表示の有無（"n"を指定すると非表示、"s" は表示） s
las 軸ラベルの方向（0：軸に平行、1：水平、2：軸に垂直、3：垂直） 0
frame.plot プロット領域の周囲の枠線の表示の有無 axes
ann 軸のラベルとタイトルの表示（TRUE, FALSE） par

プレゼンターのノート
プレゼンテーションのノート
　ここから、関数 plot() の引数の使い方を示します。
　この表に示したように、関数 plot() には多くの引数があります。ただし、解析に必要な最低限のグラフを描画するのであれば、利用すべき引数は限られます。
　既に説明したように、引数 type にアルファベット 1 文字 "p"～"n" を渡すことにより、散布図、棒グラフ、折れ線グラフなどを選択します。
　順次、引数の使い方を説明していきます。
　パッケージ graphics に含まれる他の関数も、関数 plot() とほぼ同様の引数があります。

関数 plot() の使い方：引数

plot() 関数の引数（グラフィックスパラメータ）
関数 plot() には多くの引数がある（見るためのグラフを描画するのであれば使用は限定的）
他の graphics 関数も同様の引数をもつ（matpliot、barplot、boxplot()、stripchart() など）

69

主な引数 機能（引数に渡す値） 規定値
pch プロットする記号（シンボル、マーカー）の形、plot character（1～26） 1
col プロットする記号の色（1～657、1："black"、2："red" など） 1
bg pch = 21〜25 の記号における塗りつぶし色（背景色）
cex 記号や文字の大きさ（拡大率）。1 が標準、1.5 や 0.8 などで調整
cex.axis 軸の目盛のフォントの拡大率、同様に cex.lab, cex.main, cex.sub
lty 線種、line type（1～6） 1
lwd 線の太さ、line width（デフォルトは 1、太くしたければ 2 など） 1
font 文字のフォントスタイル 1
font.axis 軸の注釈のフォントスタイル、同様に font.lab、font.main、font.sub
col.main タイトルの文字列の色、同様に col.sub、col.xlab、col.ylab、col.axis
asp x, y の比率、aspect ratio（asp = 1 で正方形スケール） NA

●、〇、■、□などの
呼び方
ここでは「記号」を
主として使用
シンボル、マーク、
マーカー、

プレゼンターのノート
プレゼンテーションのノート
　plot() で指定できるグラフィックスパラメータの引数です。
　これについても、この後で説明します。　
　なお、グラフのプロットに使う●、〇、■、□などは、シンボル、マーク、マーカーなどと呼ばれます。ここでは、「記号」とします

関数 plot() の使い方：引数

関数 plot() の引数：(15) xlim, ylim, xaxp, yaxp（軸）
(a) xlim, ylim：軸の範囲（最小値、最大値）を指定
(b) xaxp, yaxp：軸の範囲と目盛り線の位置を設定
（xaxp と xlim、yaxp と ylim の併用を推奨、最小値と最大値を一致）

70
（my_base_graphics2.R：196-211） 0 8 16

0
3

6
9

12

x1

y1

目盛線の位置を指定
区切り数：2

目盛線の位置を指定
区切り数：4

xlim と xaxp を併用
0, 16 を一致させる

0 5 10 15

0
2

4
6

8
10

12

x1

y1

目盛線の位置は
自動設定

xlim = c(0, 12)

(a)

(b)

プレゼンターのノート
プレゼンテーションのノート
　(15) xlim, ylim, xaxp, yaxp でグラフの x 軸と y 軸の設定を行います。
　(a) 引数 xlim, ylim に、x, y 軸の最小値と最大値をそれぞれ渡して、軸の範囲を決めます。
　200～203 行目で、plot() により右側の (a) の散布図を得ます（操作）。
　最大値と最小値の範囲に軸が設定されます。目盛線の位置と目盛りラベルは自動設定です。
　(b) 引数 xaxp, yaxp は、軸の範囲と目盛り線の位置の両方を設定します。
　206～211 行目で、plot() により右側の (b) の散布図を得ます（操作）。
　引数 xaxp, yaxp は、軸の目盛線の位置を指定します。引数に渡す値は、x 軸、y 軸の最小値、最大値、区切り数です。表示を安定させるために、引数 xaxp と xlim の併用が推奨されます。当然、２つの関数の最小値を一致させます。また、最大値も一致させます。yaxp と ylim も併用します。
　x 軸の区切り数に 2 を渡しているので、目盛線と目盛りラベルは 0, 8, 16 の３か所になります。y 軸の区切り数に 4 を渡しているので、目盛線と目盛りラベルは、0, 3, 6, 9, 12 の５か所になります。

関数 plot() の使い方：引数

関数 plot() の引数：(16) xlab, ylab, main, sub, ann（軸）
(a) xlab, ylab：x 軸ラベル、y軸ラベルのテキストを渡す

main, sub：メインタイトル、サブタイトルのテキストを渡す
(b) ann：FALSE で xlab, ylab, main, sub の非表示（TRUE が規定値）

71
（my_base_graphics2.R：214-229）

2 4 6 8 10

2
4

6
8

メインタイトル

サブタイトル
x 軸ラベル

y 軸
ラ

ベ
ル

2 4 6 8 10

2
4

6
8

(a)

(b)

プレゼンターのノート
プレゼンテーションのノート
　(16) 引数 xlab, ylab, main, sub, ann は、軸ラベル、メインタイトル、サブタイトルの表示を制御します。
　(a) 引数 xlab, ylab に文字列を渡すと、x 軸ラベルと y 軸ラベルに表示されます。指定しなかった場合は、変数名が表示れさます。
　(b) 引数 main, sub に文字列を渡すと、メインタイトルがグラフの上側、サブタイトルがグラフの下側に表示されます。
　217～221 行目で、plot() を実行して、右側の (a) のグラフを得ます（操作）。
　224～225 行目で、plot() を実行して、右側の (b) のグラフを得ます（操作）。
　引数 ann に FALSE を渡すと、xlab, ylab, main, sub の部分が非表示になります。変数名の表示もありません。規定値は TRUE であり、全て指定されていれば表示されます。
　なお、ann で非表示にした後、低水準関数 title で代わりに表示することができます。
　226～229 行目で、関数 title() を実行してタイトルと軸ラベルを表示します（操作）。

関数 plot() の使い方：引数

関数 plot() の引数：(17) log（軸）
対数目盛の軸に変換
plot(x, y, log = "x") ：x軸を常用対数スケールに変換
plot(x, y, log = "y") ：y軸を常用対数スケールに変換
plot(x, y, log = "xy") ：x, y の両軸を常用対数スケールに変換
自然対数スケールには対応しない
表示のみ、データが対数変換されているのではない

72

2 4 6 8 10

1
2

5
10

x1

y1

1 2 5 10

2
4

6
8

10

x1

y1

（my_base_graphics2.R：232-236）

log = "x"

log = "y"

プレゼンターのノート
プレゼンテーションのノート
　(17) 引数 log に "x"、"y"、"xy" を渡すと、x 軸と y 軸のスケールを常用対数スケールに変換します。
　自然対数に変換する引数はありません。なお、表示のみであり、データが対数変換されているのではないことに留意が必要です。
　234～236 行目で、plot() により右のグラフを得ます（操作）。

関数 plot() の使い方：引数

関数 plot() の引数：(18) axes, xaxt, yaxt, frame.plot（軸）
デフォルトの軸の表示を非表示に設定
(a) axes = FALSE：軸とプロット領域の枠線を非表示
(b) xaxt = "n"：x軸の目盛線、目盛ラベルを非表示
(c) yaxt = "n"：y軸の目盛線、目盛ラベルを非表示
(d) frame.plot = FALSE：プロット領域の枠線を非表示

73
（my_base_graphics2.R：239-249）

x1

y1

2
6

10

x1

y1

2 4 6 8 10
x1

y1

2 4 6 8 10

2
6

10

x1

y1

(a) axes = FALSE (b) xaxt = "n"

 (c) yaxt = "n" (d) frame.plot = FALSE

プレゼンターのノート
プレゼンテーションのノート
　(18) 引数 axes, xaxt, yaxt, frame.plotは、軸の表示/非表示を制御します。
　241 行目で、関数 par() を実行して、作図領域を４つに分割します（操作）。
　243 行目で、plot() の引数 axes に FALSE を渡すと、(a) のグラフのように、軸とプロット領域の枠線を非表示になります（操作）。
　244 行目で、plot() の引数 xaxt に "n" を渡すと、(b) のグラフのように、x 軸の軸線は表示されますが目盛線と目盛りラベルが非表示になります（操作）。�　245 行目で、plot() の引数 yaxt に "n" を渡すと、(c) のグラフのように、y 軸の軸線は表示されますが目盛線と目盛りラベルが非表示になります（操作）。�　246～247 行目で、plot() の引数 frame.plot に FALSE を渡すと、(d) のグラフのように、軸線が表示されますが、プロット領域の枠線が非表示になります（操作）。
　249 行目で、par() により、作図領域を復元します（操作）。

関数 plot() の使い方：引数

関数 plot() の引数：(19) xaxs, yaxs（軸）
目盛線の位置と軸線の位置の関係を制御
(a) xaxs = "r"：x 軸の範囲を 4% 自動拡張（規定値）
(b) xaxs = "i"：x 軸の目盛線と軸が一致
(c) yaxs = "r"：y 軸の範囲を 4% 自動拡張（既定値）
(d) yaxs = "i"：y 軸の目盛線と軸が一致

74
（my_base_graphics2.R：252-261）

2 4 6 8 10

2
6

10

x1

y1

2 4 6 8 10

2
6

10

x1

y1

2 4 6 8 10

2
6

10

x1

y1

2 4 6 8 10

2
6

10

x1

y1

(a) xaxs = "r" (b) xaxs = "i"

(c) yaxs = "r" (d) yaxs = "i"

目盛線と軸が
一致

自動的に
4% 拡張

拡張 一致

プレゼンターのノート
プレゼンテーションのノート
　(19) 引数 xaxs と yaxs は、軸の範囲の自動拡張の有無を制御します。
　範囲の自動拡張とは、最小値と最大値の範囲を 4% 拡張する機能です。右側に示した (a) のグラフのオレンジ枠で、10 の目盛線と右側の y 軸が一致していません。4% だけ右に拡張されています。一方、(b) のグラフのオレンジ枠で、10 の目盛線と右側の y 軸は一致しています。これは拡張されていない状態です。(c) と (d) のグラフで、オレンジ枠の中も同様の関係にあります。なお、規定値の状態は、(a) と (c) の自動拡張です。
　254 行目で、関数 par() を実行して、作図領域を４つに分割します（操作）。
　256 行目で、引数 xaxs に "r" を渡して (a) のグラフを得ます（操作）。
　257 行目で、引数 xaxs に "i" を渡して (b) のグラフを得ます（操作）。�　258 行目で、引数 yaxs に "r" を渡して (c) のグラフを得ます（操作）。
　259 行目で、引数 yaxs に "i" を渡して (d) のグラフを得ます（操作）。
　261 行目で、par() により、作図領域の分割を元に戻します（操作）。

関数 plot() の使い方：引数

関数 plot() の引数：(20) asp（軸）
軸のアスペクト比（縦/横の比）を制御

75
（my_base_graphics2.R：264-283）

aspect ratio

2 4 6 8 10

2
6

10

x1

y1

0 4 8 12

2
6

10

x1

y1

-5 5 15

2
6

10

x1

y1

2 4 6 8 10

2
6

10

x1

y1

(a) asp = NA （既定値） (b) asp = 1

(c) asp = 2 (d) asp = 0.5

正方形

縦長 横長

(2, 10) (10, 10)

 (2, 2) (10, 2)

両軸の 1 単位
が同じ長さ

地図などに適

既定値
自動調整

プレゼンターのノート
プレゼンテーションのノート
　(20) 引数 asp で、グラフの縦軸と横軸の比率（アスペクト比）を指定します。縦軸が分子、横軸が分母の比です。
　266 行目で、関数 par() を実行して、作図領域を４つに分割します（操作）。
　268～269 行目で、右の上段に示したように、赤い枠を作成するための座標を設定します（操作）。
　271～272 行目で、plot() の引数 asp に NA を渡して (a) のグラフを得ます（操作）。
　この場合は、アスペクト比を固定せずに、自動調整されます。NA は規定値なので、asp を記述しなくても、このグラフを得ます。
　274～275 行目で、引数 asp に 1 を渡して (b) のグラフを得ます（操作）。
　x 軸 1 単位 と y 軸 1 単位 が 同じ長さでてす。赤い四角形は、正方形になります。地図など、物理的な尺度が同じである必要がある場合に使用します。
　277～278 行目で、引数 asp に 2 を渡して (c) のグラフを得ます（操作）。
　y の 1 が x の 1 の 2 倍の長さです。赤い四角形は縦長になります。
　280～281 行目で、引数 asp に 0.5 を渡して (d) のグラフを得ます（操作）。
　y の 1 が x の 1 の 0.5 倍の長さです。赤い四角形は横長になります
　283 行目で、par() により、作図領域を復元します（操作）。

関数 plot() の使い方：引数

関数 plot() の引数：(21) グラフィックスパラメータ（記号）
(a) 引数 pch：記号の番号（Point CHaracter）、記号 26種類＋ASCII文字（番号 26～31は未使用）
引数 lwd：記号の枠線の太さ（規定値 1）、引数 cex：記号のサイズ（規定値 1）

pch = 0～14：白抜き記号（中身は透明、背景を隠さない）、引数 colで枠線の色指定
pch = 15～20：塗りつぶし記号、引数 col で記号全体の色指定
pch = 21～25：塗りつぶし記号、引数 colで枠線の色指定（既定値は黒）

引数 bg で中身(背景色)の色指定（既定値は白）
pch = 32～127：ASCII文字を表示（pch = "A"、"a"、"#"、"."なども可）

丸印の区別
pch = 1 ：中抜き記号、標準的に使用、規定値（記号の後ろが見える）
pch = 16：塗りつぶし記号、標準的に使用、可視性が高い（枠線なし）
pch = 19：塗りつぶし記号、やや大きめ、強調用（枠線あり、lwd の影響）
pch = 20：塗りつぶし記号、やや小さめ、多数のデータの時に便利
pch = 21：塗りつぶし記号、枠線と中身を別々に色指定

76

0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

pch = 46

中黒「・」になる
場合がある

シンボル、マーク、マーカー

プレゼンターのノート
プレゼンテーションのノート
　(21) グラフィックスパラメータに関する引数を取り上げます。
　(a) 引数 pch で、プロットする記号（シンボル、マーカー、マーク）の種類を番号で指定します。「point character」が由来です。引数 lwd で記号の枠線の太さを指定します。引数 cex で記号のサイズを指定します。いずれも規定値は 1 です。
　番号 0～127 を引数 pch に渡して、右に示した 26 種類の記号と ASCII 文字を選択します。なお、26～31 は未使用です。
　番号 0～14 は白抜き記号です。中身は透明なので、記号が重なっても後ろの記号を隠しません。pch=0 は、場合によっては中黒になることがあります。
　番号 15～20 は塗りつぶし記号です。引数 col で記号全体の色を指定します。
　番号 21～25 も塗りつぶし記号です。col と bg で、枠線と中身を別々に色指定します。　
　番号 26～31 は未使用で、指定すると無視されます。
　番号 32～127 は ASCII 文字です。番号ではなく、ASCII 文字をダブルコーテーションで囲って渡すこともできます。pch=46 の「.」（ドット、ピリオド）は、データが多数あるときに利用すると便利です。
　丸印が 5 つあります。pch=1 は中抜き記号で、pch の規定値であり標準的に使います。pch=16 は塗りつぶし記号として標準的に使います。pch=19 はやや大きめで、強調するときに使います。pch=20 はやや小さめで、多数のデータがあるときに重複を避けられます。pch=21 は枠と塗りつぶしの色を別々に指定できます。　

関数 plot() の使い方：引数

関数 plot() の引数：(21) グラフィックスパラメータ（記号）
(a) 引数 pch：記号の番号（Point CHaracter）、記号 26種類＋ASCII文字（番号 26～31は未使用）
引数 lwd：記号の枠線の太さ（規定値 1）、引数 cex：記号のサイズ（規定値 1）

記号の選択
とりあえずグラフを書きたい pch = 1（既定値、指定不要）
（グループを色で区別）

白黒で 3グループを区別 pch = 1 (○), pch = 2 (△), pch = 0 (□)
（色覚特性に配慮）

発表用にグラフを綺麗に見せたい pch = 16（●）, 17（▲）, 15（■）
（プロジェクター投影で見やすい）

枠線と中身の色にこだわりたい pch = 21（〇）, 24（□）, 22（□）

各パッケージ（graphics、lattice、ggplot2）で基本的に共通
パッケージごとに若干の違いあり

77
（my_base_graphics2.R：314-335）

0

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

プレゼンターのノート
プレゼンテーションのノート
　とりあえずグラフを書きたいときは、pch = 1 を選びます。これは既定値なので、pch の指定は不要です。グループや群を区別したいときは、色を変えます。
　色を使わずに 3 グループを区する場合は、pch=1、2、0 を使います。色覚特性に配慮して形で区別します。�　データを絞り込み、発表用にグラフを綺麗に見せたい場合は、pch=16 を選びます。枠線と中身の色にこだわりたい場合は pch=21 を選びます。プロジェクターでの投影でも見やすいのが特徴です。
　この記号の指定に関して、graphics、lattice、ggplot2 のパッケージで基本的に共通です。ただし、　パッケージごとに若干の違いがあります。
　314～335 行目を実行して、右側に示した図を得ます（操作）。
　なお、このスクリプトの説明は省略します。

関数 plot() の使い方：引数

関数 plot() の引数：(21) グラフィックスパラメータ（色）
(b) 引数 col、bg：プロットの色、ぬりつぶしの色

引数 bg, fg：背景色、前景色
引数 col.axis：軸の色
引数 col.lab：ラベルの色
引数 col.main, col.sub：タイトルの色

指定方法
数値（標準関数でのみ有効）

col = 1
色の名前を指定

col = "red"、colors()
RGB 指定

col = rgb(1, 0, 0)
col = "#FF0000"

78
（my_base_graphics2.R：314-335、一部省略）

1: "black" （黒）
2: "red" （赤）
3: "green3" （緑）
4: "blue" （青）
5: "cyan" （シアン）
6: "magenta" （マゼンタ）
7: "yellow" （黄）
8: "gray" （グレー）

色の名前

プレゼンターのノート
プレゼンテーションのノート
　(b) 記号、線、塗りつぶし、背景などの色を指定する引数は、対象とするグラフの部分に対応して、col, bg, fg, co.axis, col.lab, col.main, col.sub などがあります。
　これらの引数に、色の番号を渡す方法があります。表に示したように、1 が "black"、2 が "red"、3 が "green3"・・・です。しかし、この方法は、標準関数のみで有効な値であり、他のパッケージでは使えませんから、注意が必要です。
　一般的な方法は、色の名前を引数に渡す方法です。右側に示したコードは、その一部です。　この色の名前を確認するには、関数 colors() を実行して、Console に名前を表示させます。
　また、引数に RGB で指定することもできます。関数　rgb() に３要素の数値ベクトルを渡す方法と、16進数で渡す方法があります。
　これらの方法の中で、色の名前を渡す方法が簡単で分かり易い方法です。
　314-335 行目を実行して、色の付いた記号と色の名前を得ます（操作）。

関数 plot() の使い方：引数

関数 plot() の引数：(21) グラフィックスパラメータ（線）
(c) 引数 lty、lwd：線の種類と太さ lty（Line Type）：線種、番号または線種の名前

lwd（Line Width）：線の太さ、規定値の 1

79
（my_base_graphics2.R：339-358）

線の太さ (1.0,1.5,2.0,

0 : blank

1 : solid

2 : dashed

3 : dotted

4 : dotdash

5 : longdash

6 : twodash

プレゼンターのノート
プレゼンテーションのノート
　(c) 引数 lty で線種を指定します。引数 lwd で線の太さを指定します。
　線種を指定するには、引数 lty に 0～6 の数値または線種の名前を渡します。0 は blank で空白です。規定値は 1 の "solid" です。
　線の太さを指定するには、引数 lwd に規定値の 1 を基準とした数値を渡します。0.5 を渡すと半分、2 を渡すと 2 倍の太さになります。
　340～358 行目を実行して、右の図を得ます（操作）。
　1:solic の太さが 1、2:dashed の太さが 1.5、以下、3 が 2、4 が 2.5、5 が 3.0、6 が 3.5 に指定してあります。
　低水準関数 abline()、axis() の使い方は、この後で説明します。

関数 plot() の使い方：引数

関数 plot() の引数：(21) グラフィックスパラメータ（フォント）
(d) 引数 font：フォントの種類、番号 1～5

1: 普通のフォント（"plain"、標準のローマンフォント）
2: 太字（bold）
3: イタリック（斜体）
4: 太字かつイタリック
5: Adobe Symbol フォント（特殊記号や数学記号）

80

フォントの種類と番号

1:plain(default)

2:bold

3:italic

4:bold italic

（my_base_graphics2.R：360-370）

プレゼンターのノート
プレゼンテーションのノート
　(d) 引数 font で文字のフォントの種類を指定します。
　引数 font には 1～5 の数値を渡しますが、通常は 1～4 です。
　1 は通常の plain、2 は太文字、3 はイタリック、4 は太字のイタリックです。5 は特殊な使い方です。
　361～370 行目を実行して、右の図を得ます（操作）。
　低水準関数 text() の使い方は、この後で説明します。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数
高水準と低水準の関数を組合せてグラフを作成

高水準グラフィックス関数
グラフの骨組みを描画
（図の全体構造を作成）

低水準グラフィックス関数
高水準関数で作成したグラフに
装飾やデータを追加

ジェネリック関数
plot()
points()、lines()、text()

81

 低水準グラフィックス関数
主な関数名 パッケージ名 グラフ名（主な用途） 主な関数 追加する要素

散布図、線グラフ、棒グラフ points() 点
箱ひげ図、関数のプロット lines() 線

pairs() graphics 散布図行列 abline() 直線
boxplot() graphics 箱ひげ図 segments() 線分
stripchart() graphics １次元散布図 arrows() 矢印
hist() graphics ヒストグラム rect() 矩形
barplot() graphics 棒グラフ polygon() 多角形
dotchart() graphics Cleveland ドットチャート text() 文字列
mosaicplot() graphics モザイク図 mtext() 余白の文字列
fourfoldplot() stats 4分割プロット legend() 凡例
qqplot() stats ２標本 Q-Q プロット title() タイトル、軸ラベル
qqnorm() stats １標本 Q-Q プロット rug() 軸上のラグ
contour() graphics 等高線プロット axis() 軸
persp() graphics ３次元透視図 box() 箱
image() graphics ヒートマップ grid() グリッド線
curve() graphics 関数のプロット

 高水準グラフィックス関数

plot() base, graphics
stats

プレゼンターのノート
プレゼンテーションのノート
　ここから、「関数 plot() と低水準関数」の組合せについて説明します。
　先ほど説明したように、パッケージ graphics を中心とした標準関数には、高水準グラフィックス関数と低水準グラフィックス関数の 2 種類があります。
　高水準グラフィックス関数は、グラフの骨組みを描画する関数で、図の全体構造を作ります。左の表に示しように、関数 plot() 、hist() 、boxplot() など、作成するグラフの種類に応じて関数が用意されています。
　低水準グラフィックス関数は、すでに作成されているグラフに、装飾やデータを追加する関数です。右の表に示した points()、lines() など様々な関数があります。高水準関数で描画したグラフに、様々なグラフ要素を追加します。
　なお、plot() はジェネリック関数であり、渡すオブジェクトにより出力されるグラフの種類が異なります。同様に、points()、lines()、text() もジェネリック関数です。
　ここから、右の表のオレンジ枠で示したように、高水準関数である plot() と低水準関数の組合せでグラフを描く方法を説明します。

2 4 6 8 10

2
4

6
8

x1

y1

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(22) points(), matpoints()
(a) points()：１点の追加
(b) points()：複数点の追加、引数 typeによるタイプの選択
 （plot()と同様）

82
（my_base_graphics2.R：373-390）

2 4 6 8 10

2
4

6
8

x1

y1

type = "o" type = "p"

重心

plot() と同様
type を指定可

(a)

(b)

関数 lines() と
同じ機能

プレゼンターのノート
プレゼンテーションのノート
　スクリプトファイルの表示に合わせて、(22) から始めます。
　(22) 関数 points() と matpoints() は、既存のグラフに１点ずつ追加するための低水準関数です。
　この関数には引数 type があり、既に説明したplot() の場合と同様に、規定値は "p" で点をプロットします。また、"l"（エル）は点を結んだ折れ線、"o" は点と折れ線など、いくつかのパターンがあります。
　(a) plot() で得た散布図に、１ 点の記号を追加します。
　376 行目で、plot() により x1 と y1 の散布図を描きます（操作）。
　377～383 行目で、poins() により、x1 と y1 の平均値の座標、すなわち重心に pch=21 の記号を追加します（操作）。
　引数 pch=21 は記号の形状、引数 col と bg は枠線と塗りつぶしの色を指定します。ここでの lwd=1.2 は記号 pch=21 の枠線の太さを指定します。
　(b) plot() で得た散布図に、複数の点を追加して線で結びます。これは、この後で説明する lines() と同じ機能です。
　386 行目で、plot() により、x1 と y1 の散布図を描きます（操作）。
　387～390 行目で、poins() に type="o" を指定して点をプロットして線で結びます（操作）。
　このように、plot() と同様、引数 type で様々なパターンのグラフが得られます。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(22) points(), matpoints()（点、線）
(c) matpoints()：複数系列の点（またはそれを結んだ線）を追加、行列の列をグループとして扱う

points()の複数回呼び出しと同等の機能、系列ごとに色と形状の指定が可能

83
（my_base_graphics2.R：392-408）

0 1 2 3 4 5 6 7

1
3

5
7

x

y

points()、matpoints()は
ジェネリック関数
ベクトル、データフレーム、
マトリックスを渡すことも可

points() を
2 回呼び出し

matpoints() を
１回呼び出し

5行×2列の
行列に変換

要素数は 5
対応のある

テータ
枠のみのグラフ

type= "n" と同じ

プレゼンターのノート
プレゼンテーションのノート
　(c)　plot() で得た散布図に、point() で１点、または１系列の点、またはそれらの点を結ぶ線を追加します。一方、matpoints() は、複数系列の点、または系列ごとに点を結んだ線を追加します。
　393～395 行目で、xx を共通とする 2 系列の yy1, yy2 を定義します（操作）。　
　いずれも要素数が 5 で、対応があるデータです。2 系統で x は共通です。
　(c-1) plot() で得た散布図の枠に、points() により 2 系統の散布図を得ます。
　398～399 行目で、plot() により散布図の枠のみを描きます（操作）。
　データとして NA を渡すと、type="n" を指定するのと同じことです。データがわたされないので、引数 xlim, ylim で軸の範囲を指定します。
　400～401 行目で、points() を２回呼び出して１系列ごとプロットします（操作）。
　(c-2) plot() で得た散布図の枠に、matpoints() により 2 系統の散布図を得ます。
　404 行目で、cbind() により、　yy1 と yy2 から、5行×2列のマトリックス（行列） yy を作成します（操作）
　405～406 行目で、plot() により散布図の枠のみを描きます（操作）。
　407～408 行目で、matpoints() により、2 系列を一度にプロットします（操作）。　
 matpoints() は points() の複数回呼び出しと同等の機能があります。系列ごとに色と形状の指定が可能です。　
　なお、points()、matpoints() はジェネリック関数であるため、plot() と同様に、数値ベクトル、データフレーム、マトリックスを渡すことができます。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(23) lines()、matlines()（直線）
(a) lines() ：既存のグラフに、折れ線を１本追加、同じ長さのベクトルを x,y に渡す
(b) matlines() ：複数列のデータを一度にプロット、行列を利用、列ごとに別グループとして扱う

lines() の複数回呼び出しと同等の機能、系列ごとに色と形状を指定可

84
（my_base_graphics2.R：411-424）

2 4 6 8 10

2
4

6
8

10

x

y

３点の座標データ

プレゼンターのノート
プレゼンテーションのノート
　(23) 関数 lines() で、既存のグラフに１系列の折れ線を追加します。関数 matpoints() は、複数系列の折れ線を追加します。
　(a) plot() で得た散布図に、lines() で折れ線を追加します。
　414～415 行目で、追加する折れ線の座標 (x,y) のデータを x2, y2 を定義します（操作）。
　x2, y2 は3要素の数値ベクトルなので、３点の座標を結ぶ直線になります。
　417～418 行目で、plot() により、散布図を得ます（操作）。
　419～424 行目で、lines() により、赤い折れ線を追加します（操作）。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(23) lines()、matlines()（直線）
(a) lines() ：既存のグラフに、折れ線を１本追加、同じ長さのベクトルを x,y に渡す
(b) matlines() ：複数列のデータを一度にプロット、行列を利用、列ごとに別グループとして扱う

lines() の複数回呼び出しと同等の機能、系列ごとに色と形状を指定可

85
（my_base_graphics2.R：426-442）

0 1 2 3 4 5 6

0
2

4
6

8
10

Index

N
A

lines()、matlines() は
plot() と同様にジェネリック関数

lines() を
2 回呼び出し

matlines() を
１回呼び出し

行列に変換

枠のみのグラフ
type= "n" と同じ

要素数は全て 5
系統内で対応
のあるテータ

プレゼンターのノート
プレゼンテーションのノート
　(b) 関数 matlines() で、複数系列の線を追加します。
　427～430 行目で、2 系列の座標として、数値ベクトル xx1 と yy1、xx2 と yy2 を定義します（操作）。　
　これらの数値ベクトルの要素数は 5 で、系統ごとに 5 点の座標を結ぶ直線を得ます。
　(b-1) plot() で得た散布図の枠に、points() により 2 系統の折れ線グラフを得ます。
　433 行目で、plot() により、枠だけのグラフを得ます（操作）。
　x に NA を渡して枠を描きます。type="n" の指定と同じです。xlim と ylim で軸の範囲を指定して枠だけのグラフを得ます。　
　434～435 行目で、lines() を２回呼び出して１系列ごとに青と赤の折れ線を追加して右のグラフを得ます（操作）。
　(b-2) plot() で得た散布図の枠に、matlines() を１回呼び出して2 系統の折れ線グラフを得ます。
　438～439 行目で、5 行× 2 列のマトリックス xx と yy を作成します（操作）。
　440 行目で、plot() により、枠だけのグラフを得ます（操作）。
　441～442 行目で、matpoints() を１回呼び出して 2 系列を一度に追加して右のグラフを得ます（操作）。　
　なお、lines()、matlines() はジェネリック関数であるため、plot() と同様に、数値ベクトル、データフレーム、マトリックスを渡すことができます。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(24) segments()（線分）
(a) 1 本の線分を追加 引数：線分の始点 (x0, y0)、終点 (x1. y1)
(b) 複数の線分をまとめて追加 引数：始点と終点の数値ベクトル

86
（my_base_graphics2.R：445-461） 0 1 2 3 4 5

0
1

2
3

4
5

x

y

2 4 6 8 10

2
4

6
8

10

x1

y1

(a)

(b)

引数 x0, y0, x1, y1
線分の始点(x0, y0)と

終点(x1. y1)

線分の始点(x0, y0)と
終点(x1. y1) のベクトル

プレゼンターのノート
プレゼンテーションのノート
　(24) 関数 segments() で、指定した 2 点を結ぶ線分を描きます。
　(a) plot() で得た散布図に、segments() により１本の線分を追加します。
　448 行目で、plot() により右上の (a) の散布図を得ます（操作）。
　449～451 行目で、segments() の4つの引数 x0, y0, x1, y1 に始点 (x0, y0) と終点(x1, y1) の座標を渡して線分を追加します（操作）。
　(b) plot() で得た散布図に、segments() により複数の線分を一気に追加します。
　454～455 行目で、線分の始点と終点を表す数値ベクトルを定義します（操作）。
　３本の線分を追加するので、各ベクトルの要素は 3 つです。
 457～458 行目で、plot() により、(b) の区ラフの枠だけを得ます（操作）。
　459～461 行目で、segments() に始点と終点を表す数値ベクトルを渡して (b) のグラフを得ます（操作）。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(24) segments()（線分）
(c)エラーバーの表示
事前に標準偏差（SD）、標準誤差（SE）などを計算してブジェクトに付値
プロットした記号（シンボル）の上下に線分を描画

この他、目盛線の追加など適用場面は多い

87
（my_base_graphics2.R：463-469）

2 4 6 8 10

0
2

4
6

8

x1

y1

標準偏差 SD
標準誤差 SE
を線分で表示

標準偏差 SD
標準誤差 SE
事前に用意

プレゼンターのノート
プレゼンテーションのノート
　(c) plot() で得た散布図で、プロットした記号にsegments() によりエラーバーを付けます。
　465 行目で、事前に計算しておいた標準偏差（SD）あるいは標準誤差（SE）を オブジェクト err に付値します（操作）。
　468 行目で、plot() により右に示した散布図を得ます（操作）。
　469 行目で、segments() により、エラーバーに相当する線分を表示します（操作）。
　このほか、具体的にコードを示しませんが、目盛線の追加など、多くの適用場面があります。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(25) arrows()（矢印）
(a) arrows()：始点と終点をつなぐ線分を描き、先端に矢じりを付加
(b) エラーバーの表示 （segments() 参照）

88
（my_base_graphics2.R：472-489） 2 4 6 8 10

0
2

4
6

8

x1

y1

2 4 6 8 10

2
4

6
8

10

x1

y1

(a)

(b)
引数 code
１：(x0,y0) が矢じり
２：(x1,y1) が矢じり
３：両矢印

引数 angle = 90 で
「矢じり」が T 字形
引数 angle = 90 で
「矢じり」が T 字形

プレゼンターのノート
プレゼンテーションのノート
　(25) 関数 arrows() で矢印を追加します。 つまり、segments() と同様に、始点と終点をつなぐ線分を描き、先端に矢じりを付加します。
　(a) plot() で得た散布図に、arrpws() により傾向を示す矢印を追加します。
　475 行目で、plot() により散布図 (a) を得ます（操作）。
　476～480 行目で、segments() により、緑色の矢印を追加します（操作）。
　引数 length に矢印の先端である「矢じり」の長さを渡します。引数 code には 1～3 の番号で矢じりの位置を渡します。1 は (x0,y0) が矢じり、２は (x1,y1) が矢じり、３は両矢印です。
　(b)　plot() で得た散布図に、arrows() によりエラーバーを表示します。これは segments() で説明した手法と同じです。
　483 行目で、事前に計算しておいた標準偏差（SD）あるいは標準誤差（SE）を オブジェクト err に付値します（操作）。
　485 行目で、plot() により (b) の散布図を得ます（操作）。
　486～489 行目で、arrows() によりエラーバーを表示します（操作）。
　引数 angle には矢じりの開き具合を角度で渡します。この場合は 90 度を渡して、矢じりを T 字形にします。引数 code に 3 を渡して両矢印とします。

関数 plot() の使い方：低水準関数との組合せ

低水準関数：(26) abline()（直線）
引数 h：水平線の y 値、v：垂直線の x 値、a,b：１次式の切片と傾き

coef：１次式の切片と傾きを表す長さ 2 のベクトル、reg：回帰オブジェクト、
untf：TRUE の場合に対数変換の軸において元座標で表示

89
（my_base_graphics2.R：492-508）

0 2 4 6 8 10 12

0
2

4
6

8
10

12

x1

y1

(a) 水平線

(e) 回帰直線

(d) 直線

(b) 垂直線

(c) 直線

プレゼンターのノート
プレゼンテーションのノート
　(26) plot() で得た散布図に、abline() で直線を追加します。
　494 行目で、plot() に数値ベクトル x1,y1 を渡して、右側に示した散布図を作成します（操作）。
　496～498 行目で、abline() により、プロットした点の重心に垂直線 (a) と 垂直線 (b) を追加します（操作）。
　引数 h に y1 の平均値を渡します。引数 v に x1 の平均値を渡します。これにより、重心の位置に垂直線と水平線を引きます。
　500～501 行目で、abliene() により、１次式の直線 (c) を追加します（操作）。
　引数 a に 1 次式の切片を渡します。引数 b に 1 次式の傾きを渡します。
　503～504 行目で、abline() により、１次式の直線 (d) を追加します（操作）。
　引数 coef に１次式の切片と傾きを２つの要素の数値ベクトルで渡します。
　506 行目で、関数 lm() により、数値ベクトル x1 を説明変数、数値ベクトル y1 を目的変数として回帰分析を行い、その結果をオブジェクト lm_out に付値します（操作）。
　507～508 行目で、ablne() の引数 reg に回帰オブジェクト lm_out を渡して、回帰直線 (e) を追加します（操作）。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と高水準関数：(27) curve()（曲線、curve は高水準関数）
曲線を追加する低水準関数はないので、曲線を描く高水準関数 curve() を使用
（curve() は細かに連続させた x に対して y を計算して lines() を呼び出している）

curve()：数式に基づいた関数をプロット
引数 expr：x の関数名、数式、ユーザー定義関数を渡す 例 x^2 、sin(x)、"ifelse(x > 0, x, NA)"

add：TRUE を渡して既存のグラフに上書きする
n：描画する曲線を構成する点の数を指定（既定値 101）
from, to：グラフを描画する x の下限と上限（xlim よりも優先的）

90
（my_base_graphics2.R：511-518）

0 2 4 6 8 10 12

0
2

4
6

8
10

12

x1

y1

上書を許可

plot() の
軸に従う

プレゼンターのノート
プレゼンテーションのノート
　(27) グラフに曲線を追加する低水準関数はありません。そのため、曲線を描く高水準関数 curve() を使います。なお、curve() は細かに連続して発生させた x に対して y を計算して lines() を呼び出して結びながら曲線を描いています。
　関数 curve() の引数 expr に 数式または関数を指定します。たとえば、expr = x^2 は、y = x^2 の曲線を描きます。このような x の数式や三角関数や確率密度関数、function() で定義したユーザー定義関数などを渡します。
　引数 add は既存のプロットに新しい曲線を追加するかどうかを指定します。add = TRUE にすると、現在表示されているグラフに追加されます。デフォルトは FALSE で、新しいグラフを作成します。今回は上書するので TRUE を渡します。
　引数 n は曲線を描くための x 値の数を指定します。デフォルトは 101 で、これは 101 点の x 値を用いて曲線を描くことを意味します。より滑らかな曲線を描きたい場合は、この値を増やします。簡単に描くのであれば数値を減らします。
　引数 from と to には x 軸の範囲の下限と上限を渡します。引数 xlim もありますが、これに優先します。なお、今回は plot() で作成したグラフへの上書きなので、curve() で from/to、xlim, ylim を指定する必要はありません。
 513～514 行目で、plot() により散布図を得ます（操作）。
　515～518 行目で、curve() により曲線を追加します（操作）。
　

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(28) polygon()（多角形）
polygon()：任意の多角形（ポリゴン）をグラフ上に描く
引数 x, y：ポリゴンの頂点の x 座標と y 座標を数値ベクトルで渡す

座標が順序通りに結ばれ、最後の点と最初の点が結ばれる
col：ポリゴン内部を塗りつぶす色、NULLで無色（デフォルト）
border：ポリゴンの枠の色、通常は黒、NA で枠線なし

多角形の頂点を細かく設定して、曲線の一部の領域を表示
関数分布で説明

91
-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

dn
or

m
(x

)

（my_base_graphics2.R：521-527）

polygon() で描画
関数分布で説明

2 4 6 8 10

2
4

6
8

10

x1

y1

(a)

(b)

プレゼンターのノート
プレゼンテーションのノート
　(28) plot() で得た散布図に、polygon() で多角形を追加します。�　多角形の頂点の x 座標と y 座標を、それぞれ数値ベクトルで polygon() に渡します。したがって、２つの数値ベクトルは同じ長さで、対応があります。
　引数 col に多角形の内部の塗りつぶす色、border に枠線の色を渡します。
 523 行目で、plot() により散布図を描きます（操作）。
　524～527 行目で、polygon() により、右上のように四角形を散布図に追加します（操作）。
　右下に示した (b) の図のように、多角形の頂点を細かく設定して、曲線の一部の領域を表示する手法があります。これは、このセミナーの最後で、「関数分布」で説明します。

2 6 10

2
4

6
8

10

x1

y1

2 6 10

2
4

6
8

10

x1

y1

2 6 10

2
4

6
8

10

x1

y1

2 6 10

2
4

6
8

10

x1

y1

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(29) box()（領域の枠線）
プロット領域、作図領域、デバイス領域の枠線（［Plots］タブ）

92

(a) which =
 "plot"

(b) which =
 "figure"

(c) which =
 "inner"

(d) which =
 "outer"

通常の設定では
(c)と (d) は一致

（my_base_graphics2.R：530-549）

プレゼンターのノート
プレゼンテーションのノート
　(29) plot() で得た散布図のプロット領域、作図領域、デバイス領域に、関数 box() で枠線を追加します。
　右側の図は、本セミナーの冒頭で説明した図とほぼ同じで、グラフを描く領域を示しています。枠線を追加する領域の選択は、関数 box の引数 which で行います。
　532～533 行目で、現在のグラフィックスパラメータを保存します（操作）。
　535～537 行目で、セミナー冒頭で説明したように、外部余白と余白の設定を行い、作図領域を４分割します（操作）。
　539～542 行目で、for 文による繰返しにより、plot() で枠線が非表示の散布図を 4 つ描きます（操作）。
　544～547 行目で、 (a) プロット領域、(b) 作図領域、(c) 作図領域の集合した部分、(d) デバイス領域の枠線を描きます（操作）。
　which="plot" がデフォルトです。
　549 行目で、パラメータを復元します（操作）。
　なお、ここでは (c) inner と (d) outer の枠線の違いを説明するために、特殊な設定をしています。通常の設定では、(c)(d) は一致しています。

2 4 6 8 10

2
4

6
8

10

x1

y1 重心

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(30) text()（テキスト）
text()：プロット上の任意の座標 (x ,y) に文字列を表示
引数 label：表示する文字列、文字ベクトル

pos：座標の上下左右の位置（1～4）、引数 offset で微調整
adj：文字の位置、0～1、0(左寄せ), 0.5(中央), 1(右寄せ)

(a) 重心の位置の上側に「重心」の文字を表示

93
（my_base_graphics2.R：552-566）

pos=3
pos=2 ● pos=4

pos=1

引数 pos の位置 (x, y)

重心 (x, y) の位置に〇
その上側に「重心」を表示

(a)

プレゼンターのノート
プレゼンテーションのノート
　(30) グラフの中の指定した座標 (x, y) の位置に、関数 text() で文字を表示ます。
　引数 label表示する文字列を渡します。
　引数 x, y に、文字を表示する位置の座標 (x, y)を渡します。
　通常、座標 (x, y) の位置には「〇」などの記号あるので、座標 (x, y) から少しずらした位置に文字列を表示します。右上に示した図のように、(x, y) の位置を基準として、その上下左右にずらした位置を 引数 pos=1～4 で指定します。さらに、引数 offset に値を渡して微調整します。また、引数 adj に 0～1 の値を渡して、 0（左寄せ）、0.5（中央）、1（右寄せ）を指定します。
　(a)　plot() により得られた散布図において、 x1 と y1 の平均の位置、すなわち重心の位置に、赤い記号「〇」を表示し、その上側の位置に文字列「重心」を表示します。
　555～556 行目で x1 と y1 の平均値を計算します（操作）。
　558 行目で、plot() により散布図を描きます（操作）。
　559　行目で、関数 points() により、重心の位置に記号 〇 を表示します（操作）。
　560～566 行目で、関数 text() により、「重心」の文字を表示します。引数 pos=3 で、指定した座標の上側に文字列を表示して (a) のグラフを得ます。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(30) text()（テキスト）
text()：プロット上の任意の座標 (x ,y) に文字列を表示
引数 label：表示する文字列、文字ベクトル

pos：座標の上下左右の位置（1～4）、引数 offset で微調整
adj：文字の位置、0～1、0(左寄せ), 0.5(中央), 1(右寄せ)

(b) 散布図の各プロットの上側にラベルを表示

94

pos=3
pos=2 ● pos=4

pos=1

引数 pos の位置

（my_base_graphics2.R：567-575）

(x, y)

2 4 6 8 10

0
2

4
6

8
10

x1

y1

a1

a2
a3

a4

a5

a6

ラベルを表示

(b)

ラベル x1 y1
a1 1 1
a2 3 3
a3 6 4
a4 7 5
a5 9 7
a6 10 10

プレゼンターのノート
プレゼンテーションのノート
　(b) plot() で得た散布図で、プロットしたそれぞれの記号ま上側に、text() によりラベルを表示します。
　568 行目で、plot() により散布図を描き、6 つのデータをプロットします（操作）。
　569～575 行目で、関数 text() により、それぞれプロットした点に、引数 labes に渡した文字ベクトルを表示して (b) のグラフを得ます（操作）。
　

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(30) text()（テキスト）
(c) プロットした記号に、関数で生成したラベルを表示
(d)プロットした記号に、関数で生成したデータの数値を表示

95
（my_base_graphics2.R：577-592）

0 2 4 6 8 10 12

0
2

4
6

8
10

x1

y1

a1

a2
a3

a4

a5

a6

0 2 4 6 8 10 12

0
2

4
6

8
10

x1

y1

 2.0

 4.0
 5.0

 4.0

 7.0

11.0

(c)ラベルを自動生成して表示

(d)数値データを表示
既定値 sep=" " を変更

数値を
ラベルとして表示

ラベルを表示

プレゼンターのノート
プレゼンテーションのノート
　(c) plot() で得た散布図において、プロットした記号の上側に、関数 paste() により生成したラベルを text() で表示します。
　右上の事例 (c) では、引数 label にを渡して、ラベルを自動生成しています。
　578 行目で、plot() により散布図を得ます（操作）。
　579～583 行目で、関数 text() により記号にラベルを表示します（操作）。
　paste() では、規定値が sep=" "（スペースが入る）であるため、sep="" を指定しないと「a 1」のようにスペースが入ります。「a1」にするため規定値を変更しています。
　(d) plot() で得られた散布図で、関数 format() で生成した数値を、プロットした記号に関数 text() により、表示します。
　586 行目で、数値ベクトル y1 を四捨五入して表示するために整えます（操作）。
　ただし、この事例の場合は y1 は整数の数値ベクトルなので、特に必要はありません。
　587 行目で、plot() により散布図を得ます（操作）。
　588～592 行目で、関数 text により、プロットした記号に数値を表示します（操作）。
　プロットしたそれぞれの記号の上側に、四捨五入した数値ベクトルの値を表示します。関数 format によって表示を整えて引数 labels に渡します。

2 4 6 8 10

2
4

6
8

10

x1

y1

注 釈
 これは注 釈 です

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(31) mtext()（余白のテキスト）
mtext()：グラフの「余白（margin）」にテキストを追加
引数 text：表示する文字列、文字ベクトルも可

side：1～4、1(下), 2(左), 3(上), 4(右)
line：文字とグラフの距離、行単位
adi：文字の位置、0～1、0(左寄せ), 0.5(中央), 1(右寄せ)

 0(下寄せ), 0.5(中央), 1(上寄せ)
padj：文字の位置、0～1、0(下揃え),0.5(中央),1(上揃え)
outer ：TRUE/FALSE、規定値はFALSE

（外側余白（outer margin）に表示／表示しない）
at：各文字列の位置をユーザー座標系で指定

96

side = 1
adj = 0

side = 3 side = 4

side = 1
adj = 1

line = 3

プレゼンターのノート
プレゼンテーションのノート
　(31) 関数 mtext() で、グラフの余白にテキストを追加します。主に、プロットの 外側 または 内側 にラベルを追加するために利用します。
　引数　text には、表示する文字列を渡します。�　引数 side には 1～4 を渡します。1 はグラフの下側の余白、2 は左側、3 は上側、4 は右側てす。� 引数 line には文字とグラフの軸との距離を、行単位で渡します。�　引数 adj には文字の位置を 0～1 で渡します。0 は左寄せ, 0.5 は中央, 1 は右寄せになります。
　引数 outer は、外側余白（outer margin）に表示するかしないかを指定する引数で、規定値は FALSE です。

2 4 6 8 10

2
4

6
8

10

x1

y1

注 釈
 これは注 釈 です

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(31) mtext()（余白のテキスト）
(a) グラフの下側の余白に注釈を追加（軸から 3行下の左側の位置）

97
（my_base_graphics2.R：595-611）

(a)余白にテキストを表示

line = 3

side = 1
adj = 0

改行

プレゼンターのノート
プレゼンテーションのノート
　(a) plot() で得た散布図で、グラフの下側の余白に、mtext() により注釈を追加します。
　598～600 行目で、現在のパラメータを保存した後、注釈を表示するスペースとして、グラフの下側の余白を 5 行分確保します（操作）。
　602 行目で、plot() により右に示した散布図を描きます（操作）
　603 行目で、注釈用のテキストとして表示する文字列を設定します（操作）。
　「\n」 は改行を入れる記号です。
 604～609 行目で、関数 mtext() により注釈を表示して、(a) のグラフを得ます（操作）。
　611 行目でパラメータを復元します（操作）。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(31) mtext()（余白のテキスト）
(b) 複数のグラフに対して全体のタイトルを付ける

98

(b)複数のグラフに対して
全体のタイトルを付ける

（my_base_graphics2.R：613-631）

2 6 10

2
4

6
8

x1

y1

2 6 10

2
4

6
8

x1

y1

タイトル全体の
タイトル

プレゼンターのノート
プレゼンテーションのノート
　(b) 作図領域を分割して、複数のグラフを描いたときに、全体のタイトルを付けるために関数 mtext で余白に表示します。
　615～619 行目でパラメータを保存し、 注釈を表示するグラフの下側の余白を 5 行分確保て、作図領域を 2 分割します（操作）。
　621～622 行目で2つの散布図を描きます（操作）。
　624～629 行目で、mtext() により、余白に全体のタイトルを描画します（操作）。
　引数 at に、右の図からの位置を渡しています。
　631 行目でパラメータを復元します（操作）。

2 4 6 8 10

2
4

6
8

追加のメインタイトル

追 加 のx 軸 ラベル

追
加

の

y
軸

ラ
ベ

ル

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(32) title()（タイトル、軸ラベル）
title()：plot() での指定とは別に、タイトルと軸ラベルのカスタマイズを行う

作図後に追加や変更が容易、軸ラベルやタイトルを別々に調整可、複数のタイトルを追加
引数 main, sub, xlab, ylab：それぞれの文字列、col.lab, col.main, col.sub, cex.lab, font.lab など

99
（my_base_graphics2.R：634-652）

追加

追加

追加

プレゼンターのノート
プレゼンテーションのノート
　(32) 関数 plot() に main（主タイトル）、sub（サブタイトル）、xlab（x軸ラベル）、ylab（y軸ラベル）という引数がありますが、低水準関数 title でもこれらを追加で表示することができます。その存在理由は、柔軟性と後から追加や変更を容易にするためです。すなわち、軸ラベルやタイトルを別々に調整できること、グラフ本体の描画とは別に表示を制御できること、複数のタイトルを追加できることなどが挙げられます。
　636～638 行目でパラメータを保存し、 テキストを表示する余白を確保します（操作）。
　640～641 行目で、plot() により、軸ラベルとタイトルを欠いた散布図を描きます（操作）。
　643～650 行目で、mtext() により、でタイトルと軸ラベルを追加します（操作）。
　652 行目で、par() によりパラメータを復元します（操作）。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(33) legend()（凡例）
legeng()：複数系列のデータを１つのグラフにプロット、その凡例をプロット領域に表示
引数 x, y：凡例を表示する座標（凡例の左上の角の座標）、または x に文字列を渡す

x ="topright", "topleft", "bottomright", "bottomleft", "top", "bottom", "right", "left", "center"
inset：凡例を表示する位置の微調整、例 inset = 0.05 など
legend：凡例のテキスト 例 legend = c("グルーブ A", "グループ B")
col, pch, lty, lwd, fill：グラフで使用したパラメータと同じものを指定して対応関係を表示
bty, bg, title：凡例ボックスの枠線の種類と背景色、凡例のタイトルの文字例
horiz, ncol：horiz = TRUE で凡例を横並び、ncol = 2 で凡例の列数を 2 列で表示

３系列（A, B, C）の事例
色で識別 legend(x, y, legend = c("A", "B", "C"), col = c("orange", "blue", green"))
記号の形状で識別 legend(x, y, legend = c("A", "B", "C"), pch = c(16, 17, 18))
線種で識別 legend(x, y, legend = c("A", "B", "C"), lty = c("solid", "dashed", "dotted"))
塗りつぶしの色 legend(x, y, legend = c("A", "B", "C"), fill = c("red","blue","green") ← 棒グラフ等

100

プレゼンターのノート
プレゼンテーションのノート
　(33) 関数 legend() で凡例を追加します。複数系列のデータを１つのグラフに表示するときに必要になります。凡例はプロット領域に表示されます。
　legend() の引数は、x,y, legend, 識別する属性を持ったグラフィックスパラメータが必要てす。
　引数 x,y は、凡例の左上の角の座標を渡します。通常、名前付き引数ではなく、位置引数として最初に記述します。凡例を表示する場所を決めるのに一手間かかります。まず、凡例を表示しないで plot() で散布図を描き、記号が表示されていない空きスペースをさがして x, y を決めます。関数 legend に x,y を渡して凡例を表示します。空いているスペースがない場合、関数 plot　の中の引数 xlim, ylim で実際よりも広い範囲を指定してスペースを確保することも必要になります｡x に "topright", "topleft"・・・などの文字列を渡して、その場所に表示させることもできます。また、このあとで、関数 locator()　の使い方を紹介します。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(33) legend()（凡例）
legeng()：複数系列のデータを１つのグラフに表示して、凡例で識別
引数 x, y：凡例を表示する座標（凡例の左上の角の座標）、または x に文字列を渡す

x ="topright", "topleft", "bottomright", "bottomleft", "top", "bottom", "right", "left", "center"
inset：凡例を表示する位置の微調整、例 inset = 0.05 など
legend：凡例のテキスト 例 legend = c("グルーブ A", "グループ B")
col, pch, lty, lwd, fill：グラフで使用したパラメータと同じものを指定して対応関係を表示
bty, bg, title：凡例ボックスの枠線の種類と背景色、凡例のタイトルの文字例
horiz, ncol：horiz = TRUE で凡例を横並び、ncol = 2 で凡例の列数を 2 列で表示

３系列（A, B, C）の事例
色で識別 legend(x, y, legend = c("A", "B", "C"), col = c("orange", "blue", green"))
記号の形状で識別 legend(x, y, legend = c("A", "B", "C"), pch = c(16, 17, 18))
線種で識別 legend(x, y, legend = c("A", "B", "C"), lty = c("solid", "dashed", "dotted"))
塗りつぶしの色 legend(x, y, legend = c("A", "B", "C"), fill = c("red","blue","green") ← 棒グラフ等

101

グラフと一致させる

プレゼンターのノート
プレゼンテーションのノート
　引数 inset を用いて、凡例の位置を微調整します。
　引数 legend に、凡例の中に表示する文字を渡します。2系統ある場合は 2 要素の文字ベクトル、3 系統ある場合は 3 要素の文字ベクトルが必要です。
　引数 col, pch, lty, lwd, fill は、識別するグラフィックスパラメータです。下の「3系統の事例」のように、3系統の場合は要素数 3 のベクトルが必要です。このパラメータの形状と、plot() で描いたグラフの形状を一致させる必要があります。自動的に対応しないので、ユーザーが対応するように設定する必要があります。
　引数 bty, bg, title は、凡例ボックスの枠線の種類と背景色、凡例のタイトルの文字例を指定します。
　引数 horiz で凡例を横長か縦長かを指定します。 ncol　で凡例の列数を指定します。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(33) legend()（凡例）
(a) 2 系列のデータを１つのグラフに表示して、凡例で識別

102

0 2 4 6 8 10 12

0
5

10
15

x1

y1

群

A1
A2

左上の角
x = 0

y = 15

（my_base_graphics2.R：655-676）

凡例のスペース確保のため
範囲を広くとる場合もある

系統 1 系統2
A1 A2
pch = 16 pch = 17
col = "blue" col = "red"

冒頭に設定 系統 x1, y1
新規に設定 系統 x2, y2

プレゼンターのノート
プレゼンテーションのノート
　(a) plot() で 2 系列のデータを１つの散布図に表示して、凡例で 2 系統の区別を表示します。
　659～660 行目で、新規に系統 2 の x2, y2 を設定します（操作）。
　なお、系統1 は、冒頭で設定した x1,y1 を使います。
　662～665 行目で、plot() により、系統 1 の散布図を得ます（操作）。
　引数 xlim と ylim で軸の範囲を指定します。プロット領域に凡例を表示するスペースがない場合、軸の範囲を広く取って空きのスペースを確保します。引数 pch を 16、引数 col を blue にします。
　667～669 行目で、points() により系統 2 のデータをプロットします（操作）。
　引数 pch を 17、col を red にします。
　671～676 行目で、legend() により、凡例を表示します（操作）。
　凡例の位置として x,y の座標の値 (0, 15) を渡しています。この位置は、凡例の左上の角です。
　引数 legend、col, pch は、グラフの系統 1 と系統 2　の系統名、色、記号の形状に対応した 2 要素のベクトルを渡します。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(33) legend()（凡例）
(b) 凡例の位置を関数 locator() で指定

103
（my_base_graphics2.R：678-697）

(b-4)値の確認

再現性を確保するために
pos（2要素のベクトル）の
値を確認・保存

0 2 4 6 8 10 12

0
5

10
15

20

x1

y1

群

A1
A2

0 2 4 6 8 10 12

0
5

10
15

20

x1

y1

0 2 4 6 8 10 12

0
5

10
15

20

x1

y1

＋凡例の位置を
クリック

(b-1)

(b-2)

(b-3)
(d)

値の確認
(d)

値の確認

(b)
＋ 印をクリック

プレゼンターのノート
プレゼンテーションのノート
　(b) plot() で得た散布図で、関数 locator() により凡例を表示する位置を指定してから、legend() により凡例を表示します。
　679～686 行目で、plot() により2 系統のデータからグラフ (b-1) を得ます（操作）。
　系統1 のデータは冒頭で設定した x1,y1 です。系統 2 のデータは、(a) の 659～660 行目で設定済みの x2,y2 です。
　688 行目で、locator(1) を実行すると、(b-2) のようにプラスの印が表示されるので、凡例の左上の角にしたい位置にプラスの印を移動して、クリックします（操作）。
　クリックした座標をシステムが読み取り pos に付値します。
　690～695 行目で、legend() により、(b-3) のようにクリックした位置に凡例が現れます（操作）。
　目的のグラフ (b-3) を得ました。再実行すると、(b-2) に示した行程を再び繰り返さなくてはなりません。そこで、凡例を表示した位置を確認して保存します。
　697　行目で、オブジェクト pos に付値された値を確認して、右側に示した (b-4) の出力を得ます（操作）。
　この場合は、x=0.97、y=17.05 です。そこで、690 行目の pos を　x=1、y=17 に書き換えてこのスクリプトを保存します。さらに、688 行目を削除するか、冒頭に　# 記号を入れて実行しないようにすると、このスクリプトの再実行時、自動的にグラフ (b-3) を得ます。ただし、この操作は、ここでは省略します。
　

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(34) axis()（軸）
axis()：既存のグラフに軸（Axis）を追加、既存の軸を細かくカスタマイズ
引数 side：軸の設定、必須、1（下, x軸）、2（左, y軸）、3（上,横軸）、4（右,縦軸）

at：目盛の座標、数値ベクトル、指定しないと自動的に設定される（既定値NULL）
labels：目盛ラベル、TRUE/FALSE（atで指定した数値を使用(規定値)/表示なし）

at と同じ長さの文字ベクトルを渡すと文字の目盛ラベルを表示
tick：TRUE/FALSE（目盛線を表示(規定値)／非表示）
pos：軸線自体を描画する位置を、もう一方の軸の座標で指定
las：目盛ラベルの向き、0（軸と平行(既定値)）、1（水平）、2（軸に垂直）、3（垂直）
cex.axis：目盛ラベルのサイズを指定

 col, col.tick：軸線の色、目盛線の色

既定値：axis(side, at = NULL, labels = TRUE, tick = TRUE, ...)

104

プレゼンターのノート
プレゼンテーションのノート
 (34) 関数 axis で、既存のグラフに軸（axis）を追加・再描画します。plot() で自動的に描かれる軸を、自分でカスタマイズしたい場合に使います。軸をカスタマイズするために、様々な引数があります。
　引数 side は、カスタマイズする軸を指定する引数で、1～4 の値を必ず渡します。1 が 下の軸で通常の x軸、2 が左の軸で通常の y 軸、3 が上の横軸、4　が右の縦軸です。�　引数 at は、目盛りを入れたい座標を数値ベクトルで指定します。規定値は NULL で R が自動的に適切な目盛りを配置します。�　引数 labels は、目盛として表示するラベルを指定します。デフォルトは TRUE で、at で指定した数値そのものをラベルとして使用します。FALSE を渡すと: ラベルを表示しません。引数 at と同じ長さの文字列ベクトルを渡すこともできます。
　引数 tick が規定値の TRUE の場合、目盛り線として短い線を表示します。FALSE にすると線を表示しません。�　引数 pos は軸線自体を描画する位置を、もう一方の座標で指定します。例えば side=1 として x の軸を y=0 の位置に移動したい場合は pos = 0 とします。詳しくは実例で説明します。
　引数 las には目盛ラベルの向きを指定するために、0～3 を渡します。0 は軸と平行で規定値です。1 は水平、2 は軸に垂直、3 は垂直です。�　引数 cex.axis には目盛ラベルの文字サイズ、col には軸線の色、col.tick には目盛線の色を渡します。

関数 plot() と低水準関数：(34) axis()（軸）
(a) x 軸の座標 1～5 に A～E を表示（インデックスプロット）

関数 plot() の使い方：低水準関数との組合せ

105
（my_base_graphics2.R：700-710）

2
4

6
8

10
y1

A B C D E

2
4

6
8

10
y1

(a-1)

(a-2)

x 軸の
目盛ラベル
を非表示

x 軸の
目盛ラベル

を追加

プレゼンターのノート
プレゼンテーションのノート
　(a) plot() で得たインデックスプロットにおいて、x 軸に表示されているインデックスの代わりに、アルファベットにの目盛ラベルを表示させます。x 軸の座標 1～5 の位置に A～E を表示します。
　703～706 行目で、plot() に y1 を渡してインデックスプロット (a-1) を得ます（操作）。
　引数 xaxt に "n" を渡して、x 軸の目盛ラベルを非表示にします。
　708～710 行目で、関数 axis() により、 (a-2) のように x 軸の目盛ラベルを追加します（操作）。
　引数 side に 1 を渡して x 軸を対象とします。　�　引数 at で表示する x の座標を渡します。この場合は、左からの順序、すなわちインデックスが座標になります。1,2,3,4,5 のインデックスを渡しているてので、この位置に、引数 labels に渡した "A", "B", "C", "D", "E" を表示します。

関数 plot() と低水準関数：(34) axis()（軸）
(b) x軸の 0～10 の位置に 1刻みで目盛線を追加

x 軸の 0, 5, 10 の位置に目盛ラベルを追加

関数 plot() の使い方：低水準関数との組合せ

106
（my_base_graphics2.R：712-724）

2
6

10
y1

2
6

10
y1

2
6

10
y1

0 5 10

目盛線の間隔を1

目盛ラベルの間隔を 5

目盛線の間隔を1

目盛ラベルの間隔を 5

(b-1)

(b-2)

(b-3)

x 軸の
目盛ラベル
を非表示

プレゼンターのノート
プレゼンテーションのノート
　(b) plot() で得た散布図において、x 軸の 0～10 の位置に、1 刻みで目盛線を追加します。さらに、x 軸の 0, 5, 10 の位置に、目盛ラベルを追加します。最終的に、(b-3) の x 軸のとおり、目盛線の全てに目盛ラベルを付けない形式の軸を得ます。
　713～716 行目で、plot() の引数 xaxt に "n" を渡して、 x 軸を非表示にした散布図 (b-1) を得ます（操作）。
　718～720 行目で、axis() により、x 軸の 0～10 の位置に、1 刻みで目盛線を追加して (b-2) のグラフを得ます（操作）。
　引数 labels に FALSE を渡してあるので、目盛ラベルは非表示で、目盛線のみを描きます。
　722～724 行目で、axis() により、x 軸の 0, 5, 10 の位置に、目盛ラベル 「０,５,10」 を追加して (b-3) のグラフを得ます（操作）。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(34) axis()（軸）
(c) x軸の座標 1～5 に x1～x9 を自動生成して表示

（インデックスプロット）
paste() ：文字列を規則的に生成する関数
seq(1, 9, 2) ：数列を規則的に生成する関数

1 から 9 まで 2 刻みの数列を生成

107
（my_base_graphics2.R：726-734）

x 軸の
目盛ラベル

自動的に生成 2
4

6
8

10
y1

X1 X3 X5 X7 X9

2
4

6
8

10
y1

(c-1)

(c-2)

x 軸の
目盛ラベル

自動的に生成

プレゼンターのノート
プレゼンテーションのノート
　(c) plot() により、(a) と同様のインデックスプロットを得ます。x 軸の目盛ラベルを自動生成して表示させます。
　727～730 行目で、plot() に y1 を渡してインデックスプロットを得ます（操作）。
　732～734 行目で、axis() により、目盛ラベルを追加します（操作）。
　引数 labels に、関数 paste0 を用いて自動生成した文字列を目盛ラベルとして渡します。seq() は 1 から 9 まで 2 刻みの数列を生成します。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(34) axis()（軸）
(d) x軸と y軸の交わる位置を指定

108
（my_base_graphics2.R：736-747）

x1

y1

x1

y1

-5 0 5 10 15-5
0

5
10

15
20

x1

y1

-5 0 5 10 15-5
0

5
10

15
20

(d-1)

(d-2)

(d-3)

x 軸 pos =0
y 軸 pos=0

-5 0 5 10 15

-5
0

5
10

15
20

x1

y1

x<0 まで描いた
通常のグラフ

原点の位置に
軸を配置

プレゼンターのノート
プレゼンテーションのノート
 (d) plot() で散布図 (d-3) を得ます。軸の範囲を負の領域まで拡大して、回帰直線を描くと、plot() の規定値では左上の散布図を得ます。グラフの軸を（x=0, y=0）の位置に配置して、(d-3) の散布図をえるように調整します。
　737 行目で、y1 を目的変数、x1 を説明変数として単回帰分析を行い、その結果をオブジェクト lm_out に付値します。
　739～742 行目で、散布図 (d-1) を描きます。
　引数 axes = FALSE によって、x 軸と y 軸を非表示にします。仮に axies = FALSE を指定せずに、通常の設定で作図すると、左側に示した散布図を得ます。
　744～745 行目で、axis() により、原点を通る軸を追加します（操作）。
　引数 side = 1 は x 軸（下）を指定します。pos = 0 によって y=0 の位置に軸を描きます。
　引数 side = 2 は y 軸（左）を指定します。pos = 0 によって x=0 の位置に軸を描きます。
　これにより、原点を通る軸が描かれ、(d-2) のグラフを得ます。pos の位置を－5 のように 0 以外の位置にすることも可能です。
　746 行目で、abline() に回帰モデルオブジェクト lm_out を渡して、回帰直線を追加します（操作）。

関数 plot() の使い方：低水準関数との組合せ

関数 plot() と低水準関数：(35) grid()（グリッド線）
グリッド線（水平線、垂直線）の追加

109
（my_base_graphics2.R：750-766）

自動設定（既定値）
nx = NULL：自動
ny = NULL：自動
col = "lightgray"
lty = "dotted"

2 4 6 8 10

2
4

6
8

x1

y1

2 4 6 8 10

2
4

6
8

x1

y1

1 2 5 20 50 200

10
50

20
0

Index

8:
27

0

(a)

(b)

(c)

自動設定（既定値）
nx = NULL：自動
ny = NULL：自動
col = "lightgray"
lty = "dotted"

プレゼンターのノート
プレゼンテーションのノート
　(35) 関数 grid() で、水平と垂直のグリッド線を追加します。
　(a) plot() で得た散布図に、grid() の自動設定で適切なグリッド線を追加します。
　753 行目で、plot() により散布図を得ます（操作）。
　754 行目で、grid() を引数なしの規定値で実行してグリッド線を追加して (a) のグラフを得ます（操作）。
　水平線と垂直線が目盛線に従って自動的に引かれます。色は lightgrqy、線種は dotted（点線）が規定値です。
　(b) plot() で得た散布図に、grid() により水平のグリッド線のみを追加します。
　757 行目で、plot() により散布図を得ます（操作）。
　758～762 行目で、水平のグリッド線を描き、(b) のグラフを得ます（操作）。
　引数 nx と ny に NA を渡すとグリッド線は非表示になります。NULL を渡すと自動設定になります。
　(c) plot() で対数目盛に設定した散布図を得て、ここにグリッド線を追加します。
　765 行目で、plot() の引数 log に "xy" を渡して、両軸が対数目盛の散布図を描きます（操作）。
　766 行目で、grid() の引数 equilogs に FALSE を渡して対数目盛に対応したグリッド線を追加して (c) のグラフを得ます（操作）。

関数 plot() の使い方：Help の見方
関数 plot() のヘルプ
パッケージ base に属する plot() は、渡されたオブジェクトの種類（クラス）に基づいて、
パッケージ graphics とパッケージ stats に属する関数を自動的に呼び出す（概略）

注）R 4.0.0 で、plot() の本体は graphics から base に移動した

110

関数 plot に関するヘルプの参照箇所

パッケージ 主な関数 役割、plot に渡すオブジェクト Help の内容の一部
base plot plot の本体、以下の関数に振分 plot の概要

 　 plot.default 基本的な描画 基本的なグラフィックスパラメータの説明
　 plot.formula formulaオブジェクト 式(y~x) を渡す場合の関数の対応
 　 plot.data.frame データフレーム・オブジェクト データフレーム全体を渡す場合の関数の対応
 　 plot.lm lm, glmオブジェクト 線形診断プロットの種類と選択の方法

 　 plot.ts ts(時系列)オブジェクト 時系列データ特有のパラメータ

 　 plot.density deysityオブジェクト(密度推定) 密度曲線のパラメータ

graphics par グラフィックスパラメータの設定 関数に共通したグラフィックスパラメータの使い方

stats

注）関数 par は関数 plot ではない。par で説明されるパラメータの多くは、plot の引数として直接指定することも可能
 (例: col, pch, lty, cex等)。

graphics

プレゼンターのノート
プレゼンテーションのノート
　ここまでに説明してきた高水準関数、低水準関数について、どのような引数があり、どのような使い方をするのかは、ヘルプを見ると情報が得られます。
　関数 plot() はパッケージ base に属するジェネリック関数で、非常に多機能です。表に示したように、plot() は、渡されたオブジェクトの種類に応じて、パッケージ graphics と stats に属する関数を呼び出します。そのため、ヘルプの場所が複数に分かれています。なお、R 4.0.0 で plot() の本体はパッケージ graphics からパッケージ base に移動しました。
　まず、最初に見るべき関数は plot() と plot.default() です。
　また、表の最下段にある関数 par() は、plot() 関連の関数ではありませんが、par で説明されている引数の多くは、plot() の中で直接設定することが可能です。したがつて、par のHelp も参照の対象になります。plot() の中で指定したグラフィックスパラメータは、そのグラフのみに有効です。一方、par の中で指定すると、指定後に作成するグラフすべてに有効になりまりす。

関数 plot() の使い方：Help の見方

111

plot にカーソルを
合わせて F1 キー

パッケージ graphics での Help

パッケージ base での Help

関数の Help を表示

プレゼンターのノート
プレゼンテーションのノート
　関数 plot() のヘルプを表示させるために、　[Source エディタ]または[Console]に表示されている 「plot」 にマウスカーソルを合わせて、F1 キーを押します（操作）。
 あるいは、[Console] に 「help("plot")」、または「?plot」 を入力しても、同様にヘルプを表示できます（操作）。
　[Help]タブに plot() のヘルプが表示されます。 関数 plot() の場合のみ、ここに示したように直ちに関数 plot() のヘルプが表示されず、パッケージ base と graphics のいずれかの場所を選択するようになっています。 　
　「The Default Scatterplot Function」を選択すると、パッケージ graphics に所属する関数 plot.default() のヘルプを得ます（操作）。
　「graphics」を選択すると、パッケージ grapics に所属する関数の一覧を得ます（操作）。
　「Generic X-Y Plotting」を選択すると、パッケージ base に所属する関数 plot() のヘルプを得ます（操作）
　「base」を選択すると、パッケージ base に含まれる関数の一覧を得ます（操作）。
　

関数 plot() の使い方：Help の見方

関数 plot() のヘルプ

112

The Default Scatterplot Function
(in package graphics in library)

Generic X-Y Plotting
(in package base in library)

plot()

plot() に
呼び出される

関数

クリック

base を選択 graphicsを
選択

プレゼンターのノート
プレゼンテーションのノート
　左側のように、パッケージ base を選択すると base に含まれる関数が表示されるので、その中から plot() をクリックしてヘルプを表示させます（操作）。
　右側のように、パッケージ graphics を選択すると、graphics に含まれる関数が表示されるので、その中から plot() が呼び出す関数 plot.data.frame, plot.default() などをクリックして Help を参照します（操作）。
　右側のグリーン枠で示した plot.default() をクリックして、次のスライドに移ります（操作）。

http://127.0.0.1:8412/help/library/graphics/html/plot.default.html
http://127.0.0.1:8412/help/library/graphics/html/00Index.html
http://127.0.0.1:8412/help/library/base/html/plot.html
http://127.0.0.1:8412/help/library/base/html/plot.html
http://127.0.0.1:8412/help/library/base/html/plot.html
http://127.0.0.1:8412/help/library/base/html/00Index.html

関数 plot() の使い方：Help の見方

関数 plot() のヘルプ
関数 plot.default() で、関数 plot() の Help を参照

Description, Usage, Arguments, Details, Value,
Rferences, See Also, Exampleの項目に分けて表示

113

(i) Description（説明） (ii) Usage（使用方法）

(iii) Arguments
（引数）

plot.default()

引数の
説明

引数

plot() の
構文

概要

パッケージ名

既定値
デフォルト値

プレゼンターのノート
プレゼンテーションのノート
　(i) plot.default() のヘルプが、[Help]タブに表示されます。パッケージ名が「graphiecs」になっています。その下の Description に、何をする関数なのか、その概要が書かれています。
　(ii) Description の下に Usage があり、関数 plot() の基本的な構文が書かれています。ここで各引数に渡されている値は、規定値、すなわち指定しない場合に使われるデフォルトの値です。
　(iii) Usage の下に Arguments（引数） があり、関数の引数の説明が書かれています。
　さらにその下に、Details, Value, Rferences, See Also, Example の項目があり、plot() に関する詳しい情報が得られます。

関数 plot() の使い方：Help の見方

関数 plot() のヘルプ
Examples
サンプルコードを RStudio に貼付けて実行
コードと実行結果から、関数の使い方を確認

114

(ii)新しいタブを開く

(ii)新しいタブ

(iv) 実行
(iii)サンプルコードをコピー

(i)Examples
(ii)クリック
[new file]

＞[R Script]

(iii) 範囲選択

プレゼンターのノート
プレゼンテーションのノート
　ヘルプの最後の項目は　Examples です。ここには、plot() の具体的なサンプルコードとデータがあります。このコードは、直ちに実行することができます。
　(i) Examples の項目を表示させて、サンプルコードを確認します（操作）。
　(ii) [new file]＞[R Script] と進んで、エディタに新しいタブ[Untitled]を作成します（操作）。
　(iii) Examples にあるコードを範囲選択し、これを新しいタブにコピーします（操作）。
　(iv) コピーしたコードを実行して、コードと実行結果から、関数の使い方を確認します（操作）。
　他の関数も同様に、Help にあるサンプルコードを実際に実行して、その関数の使い方を確認できます。
　なお、新しく作成したタブは、不要であれば消去しておきます（操作）。

5 標準関数によるグラフ作成
（パッケージ graphics, statsのグラフィックス関数）

高水準グラフィックス関数の事例
使い方の詳細は省略（関数のヘルプを参照）

（グラフィックスパラメータはデフォルメした設定）

115

プレゼンターのノート
プレゼンテーションのノート
　標準関数によるグラフ作成を説明します。plot() の他に、パッケージ graphics, stats に含まれるグラフ作成用の高水準関数を取り上げます。
　関数の使い方の説明は限定的なので、適宜、各変数のヘルプなどを参照してください。
　なお、グラフのどの部分を設定したのかが分かり易いように、グラフィックスパラメータはデフォルメした設定にっています。適切な設定とは異なる場合かあるので、留意してください。

グラフ作成用の標準の高水準関数
散布図、条件付き散布図、複数系列の散布図、散布図行列
サンフラワープロット 記号プロット
箱ひげ図 １次元散布図
ヒストグラム 幹葉図
棒グラフ Cleveland ドットチャート
円グラフ モザイク図
スパインプロット スピノグラム
Cohen-Friendly の連関図 4分割プロット
２標本 Q-Q プロット １標本 Q-Q プロット
等高線プロット 3D曲面プロット
ヒートマップ 関数のプロット

標準関数によるグラフ作成：準備
主な関数名 パッケージ名 グラフ名（主な用途）

plot graphics 等 散布図、線グラフ、棒グラフ、箱ひげ図
coplot graphics 条件付き散布図、線グラフ
matplot graphics 複数系列の散布図、線グラフ
pairs graphics 散布図行列
sunflowerplot graphics サンフラワープロット
symbols graphics シンボルプロット
boxplot graphics 箱ひげ図
stripchart graphics １次元散布図
hist graphics ヒストグラム
stem graphics 幹葉図
barplot graphics 棒グラフ
dotchart graphics Cleveland ドットチャート
pie graphics 円グラフ
mosaicplot graphics モザイク図
spineplot graphics スパインプロット、スピノグラム
assocplot stats Cohen-Friendly の連関図
fourfoldplot stats 4分割プロット
qqplot stats ２標本 Q-Q プロット
qqnorm stats １標本 Q-Q プロット
stars graphics スターチャート（レーダーチャート）
contour graphics 等高線プロット
persp graphics 3D曲面プロット（３次元透視図）
image graphics ヒートマップ
curve graphics 関数のプロット

116

プレゼンターのノート
プレゼンテーションのノート
　グラフ作成用の高水準関数を、再度、表示します。表の左の列から、関数名、属するパッケージ、作成するグラフの種類です。これらの標準関数の使い方の概要をこれから示します。
　所属するパッケージは、主に graphics ですが、stats の関数も含まれます。これらは、インストール・ロードをしなくても直ちに使える関数なので、「標準関数」です。

標準関数によるグラフ作成：準備

117

(ii) ダウンロードした
R スクリプトファイル

(iv) [Run] アイコンで
1 行ずつ実行

(i) プロジェクト

(iii) my_plot1.R
クリックして読込

(iii)my_base_graphics3.R
このタブを開く

(iv) コード

プレゼンターのノート
プレゼンテーションのノート
　ここから、RStudio で実際にスクリプトを実行しながら説明します。
　(i) 引き続き「my_base_graphics」のプロジェクトの中で操作します（操作）。
 (ii) [Files] タブを開き、プロジェクトのフォルダの中にダウンロードした R スクリプトファイルがあることを確認します（操作）。
　(iii) その中から、「my_base_graphics3.R」をクリックして、左上のペインにある [Source エディタ]で開きます（操作）。
　(iv) これまでと同様に、[Run]アイコンで、１行ずつコードを実行します。

標準関数によるグラフ作成：準備
事前の設定

(i) データとして利用するデータセットを、関数 data() により明示的に読込
このコードは必須ではないが、明示性と安全性のために使われる慣習

(ii) 関数 par()による余白と軸の設定

118
（my_base_graphics3.R：1-18）

(i) データセットを明示的に読込
（必ず必要という訳ではない）

(ii) 余白と軸を設定

プレゼンターのノート
プレゼンテーションのノート
　(i) 利用するデータセットを明示的に読み込みます。
　7～13行目で、関数 data() により 6 種類のデータセットを読込ます（操作）。
　この後で説明するように、これらのデータセットは標準パッケージ dataset に含まれているので、data() による読込をしなくてもこれらのデータセットを使えます。ただし、スクリプトの可読性を高めるために、「これからこのデータセットを使います」という意図を明確にするために記述します。
　(ii) 余白と軸を設定します。
　16 行目で、関数 par() により、余白と軸を設定します（操作）。
　このセミナーでは、この設定でグラフを作成します。グラフによっては変更する場合もあります。 また、見やすいように各自で設定し直すこともできます。

標準関数によるグラフ作成：データ

パッケージ datasetsに含まれるデータセット
パッケージ datasetsの内容（data() で一覧表示）
統計解析やグラフィックス用のサンプルデータ
分野は様々（植物学、経済学、気象学、機械工学など）
データセットの名称、内容、データ構造の例

iris アヤメの花の形状データ（data.frame）
mtcars 自動車の性能データ（data.frame）
chickwts 鶏の飼料に関する飼育試験（data.frame）

パッケージ datasetsの利用
インストール済み、ロード済みである
データセットの名称（iris, mtcarsなど）を

オブジェクト名として使用 df <- iris、iris[,2]
［Packages］タブ、［Help］タブで確認

119

ロード済み
クリック

クリック

(i)［Packages］タブ

(ii)［Help］タブ

プレゼンターのノート
プレゼンテーションのノート
　サンプルデータとして用いるデータセットを説明します。
　これらのデータセットは、パッケージ datasets に含まれています。統計解析やグラフ作成のサンプルデータで、植物学、経済学、気象学など、多様な分野のデータです。
　「data()」 を Console に入力して実行すると、datasets に含まれるデータセットの一覧が表示されます（操作）。
　ここに示した例のように、iris、mtcars、chickwts などのデータフレーム、マトリックス、リスト、時系列データなど、様々なデータ構造のデータが含まれます。
　(i) [Packages]タブを開いて、パッケージ dataset の存在をを確認します（操作）。
　ここに表示されているということは、、インストール済みであるということです。さらに、□にチェックが入っているので、ロード済みであることも分かります。
　(i) この「datasets」をクリックします（操作）。
　(ii) [Help]タブにその説明が表示されます。その中に、「iris」が確認できます。このデータセットの名称が、そのままオブジェクト名になります。たとえば、df というオフジェクトに iris というオフジェクトを付値できます。iris[,2] により、2 列目のテータを呼び出すことができます。
　「iris」 をクリックして、[Help]タブに表示される説明を確認します（操作）。
　「iris」と同様に操作して、データセット「mtcars」「chickwts」　に関する情報を得ます（操作）。

標準関数によるグラフ作成：データ

パッケージ datasets に含まれるデータセット
関数 data で明示的にデータセットを読込

120

(i) ［Environment］タブ

(ii) data(irix) を実行

(iii)オフジェクト irisを開ける

クリック

(iv)オブジェクト irisの内容

クリック

with

5つの変数と
150 の観測値
から構成

因子ベクトル
3 水準

内部コード 1, 2, 3

数値ベクトル 4個
因子ベクトル１個

プレゼンターのノート
プレゼンテーションのノート
　RStudio で、データセットの内容を確認します。
　(i) RStudio を起動した直後、通常は［Environment］タブにはなにも表示されていません。
　(ii)先ほど data(iris) を実行したので、［Environment］タブに 「iris」 が表示されています。ただし、values と表示されています。この「iris」をクリックします（操作）。
　(iii) value が Data　に変化します。「iris」は、5つの変数(variables) と 150 の観測値(obs, observation) から構成されていることがわかります。つまり、5×150=750 のデータがあります。「iris」の左にある白抜きの三角をクリックして、5 つの変数の内訳を開けます（操作）。
　(iv) 「iris」の内容は、Sepal.Length、Sepal.Width、Patel.Lenght、Patel.Width の名前をもつ４つの数値ベクトル（num）と、Species という名前の１つの因子ベクトル（Fctor）です。因子ベクトルの水準（level）は3つです。「/w」 は with の省略です。オレンジの矢印で示したように、この右側をスクロールして、３水準の品種の内部コードが 1, 2, 3 になっていることを確認します（操作）。

標準関数によるグラフ作成：データ

データセット「iris」
アヤメの花の形態データ（Fisher, R. A., 1936）
「がく片」と「花弁」の形状のデータフレーム
長さ（縦）と幅（横）＋品種名 ・・・5列
３品種につき 50 個体を測定・・・150 行
同一場所で、同じ日に、同一人物によって
同じ測定器で同時に記録（Anderson's Iris data set）

121

表アイコン

がく片・長さ がく片・幅 花弁・長さ 花弁・幅 品種

(i)関数 head() でiris の最初の部分を表示

(iii)オブジェクト irisの内容

(ii)表型式の表示 数値ベクトル 4個
因子ベクトル１個

プレゼンターのノート
プレゼンテーションのノート
　データセット　「iris」は、アヤメの花の形態データです。データフレームです。Fisher が論文で使用したことで有名です。
　前のスライドで示したように、右下の (iii) の[Environment]タブで、「iris」の内容を確認します（操作）。
　(iii) で 表アイコンをクリックして、(ii) の表型式で表示されるデータを確認します（操作）。　
　(i) のように、コンソールに関数 head(iris) を打ち込んで、オブジェクト「iris」 の最初の部分を表示します（操作）。
　アヤメの花の「がく片」と「花弁」の長さと幅で 4 列、これに品種名を加えて 5 列のデータで構成されます。アヤメ 3 品種について 50 個体ずつ測定されているので、150 行です。したがって、150 行× 5 列のデータフレームで、数値ベクトル 4列、因子ベクトル１列です。
　変数名（列名）は、数値ベクトルの Sepal.Length、Sepal.Width、Patel.Lenght、　Patel.Width と、因子ベクトルの Species です。
　同一場所で、同じ日に、同一人物によって同じ測定器で同時に記録されました。アンダーソンが調査したデータであることから、アンダーソンのアヤメデータセットとも呼ばれます。�　

標準関数によるグラフ作成：データ

データセット「mtcars」
自動車の性能データ：米国版Motor Trend 誌（1974）から抽出（Henderson and Velleman, 1981）

32 台の自動車 (1973 ～ 1974 年モデル) の燃費、自動車の設計および性能に関するデータ
車種の名称（行名）と性能データ（10 列の数値ベクトル）のデータフレーム

mgp：燃費（miles/gallon） cyl ：気筒数
disp：排気量(立方インチ) hp ：総出力
drat：後車軸比 wt ：重量(1000 lbs) qsec：1/4 mile 走行時間
vs ：エンジン(0 = V-shaped, 1 = straight)
am ：トランスミッション（0=automatic、1=manual）
gear：前進ギアの数 carb：キャブレター数

122

(i) ［Environment］タブの表示

(ii) 表型式の表示

表アイコン

行名
車種の名称

数値

白抜きの三角

プレゼンターのノート
プレゼンテーションのノート
　データセット　「mtcars」は自動車の性能データです。データフレームです。
　米国版 Motor Trend 誌（1974）から抽出したデータで、Henderson and Velleman によるものです。32 台の自動車の燃費と自動車の設計および性能に関するデータです。
　(i) [Environment]タブを開き、「mtcars」の左にある白抜きの三角をクリックして、「mtcars」 のデータフレームの構造を確認します（操作）。
　この表示の表のアイコンをクリックして、(ii) を表示させ、実際のデータを確認します（操作）。
　10 列からなる性能データはいずれも数値ベクトルです。エンジンの種類とトランスミッションのオートマとマニュアルも、0 と 1 に数値化されています。行名にそれぞれの行の車種名があります。車種名がデータ本体の列にあるのではなく、行名にあることに留意してください。
　関数 head() でデータセットの内容を確認します（操作）。

標準関数によるグラフ作成：データ

データセット「chickwts」
鶏の飼育試験データ
孵化した直後、雛を無作為に6グループに分け、6 種類の異なる飼料を給与
6週間後の体重（g）を測定、体重増加に対する飼料の種類の効果を解析

飼料の種類と雛の体重のデータフレーム
weight：鶏の体重（g）、数値ベクトル
feed：飼料の種類、因子ベクトル（6 水準）

"sunflower" 12羽, "soybean" 14 羽, "meatmeal" 11羽,
 "linseed" 12羽, "horsebean" 10羽, "casein" 12羽

123

(i)［Environment］タブの表示

(ii)表型式の表示

(iii)

6 水準

表アイコン

プレゼンターのノート
プレゼンテーションのノート
　データセット　「chickwts」は、鶏の飼育試験データです。データフレームです。
　孵化した直後、雛を無作為に6つのグループに分け、グループごとに 6 種類の異なる飼料を給与して、6 週間後の体重（g）を測定しました。体重増加に対する飼料の効果を解析します。飼料名と供試した雛の数は、"sunflower" が 12 羽, "soybean" が 14 羽, "meatmeal" が 11 羽, "linseed" が 12 羽, "horsebean" が 10 羽, "casein" は 12 羽でした。
　(i) [Environment]タブを開き、データフレームの構造を確認します（操作）。
　(i) で表アイコンをクリックして　(ii) を表示させて、実際のデータを確認します（操作）。
　列名 weight は鶏の体重（g）で、数値ベクトル（num）です。feed は飼料の種類で、水準数 6 の因子ベクトル（Factor）です。
　関数 head() を Console に入力して実行し、(iii) のデータセットの内容を確認します（操作）。
��

標準関数によるグラフ作成：データ

データセット「PlantGrowth」
植物の栽培試験データ
対照区（ctrl）と2つの異なる処理区（trt1, trt2）で植物を栽培
生長量を乾燥重量（g）で測定、各試験区とも繰返し数は 10

試験区と植物の生長量のデータフレーム
weitht：植物の生長量（g）
group：対照区（ctrl）、2つの異なる処理区（trt1, trt2）
各試験区とも 10 区、データフレーム

124

植物の生長量（g）

対照区（crtl）
処理九（trt1, trt2）

(ii)

(iii)

3 水準 表アイコン

(i)［Environment］タブの表示

プレゼンターのノート
プレゼンテーションのノート
　データセット　「PlantGrowth」は、植物の栽培試験データです。データフレームです。
 対照区（ctrl）と2つの異なる処理区（trt1, trt2）で植物を栽培して、生長量を乾燥重量で測定したデータです。各試験区とも無作為に 10 区で栽培しました。�　(i) [Environment]タブでデータフレームの構造を確認します（操作）。
　(i) で表アイコンをクリックして　(ii) を表示させて、実際のデータを確認します（操作）。
　(iii) 関数 head() を Console に入力して実行し、データセットの内容を確認します（操作）。

標準関数によるグラフ作成：データ

テータセット「VADeaths」
米バージニア州の1940 年における 1000 人あたりの死亡率（‰）
死亡率は人口 1000人当たりの年間死亡率
5段階の年齢層（行）と 4 つり地域・性別（列）で死亡率を計算
年齢層は「50～54歳」、「55～59歳」、「60～64歳」、「65～69歳」、「70～74歳」
地域・性別は「農村部の男性」、「農村部の女性」

「都市部の男性」、「都市部の女性」
５行×４列のマトリックス（行列）
行：年代
列：地域と性別
要素：死亡率（‰）

125

年齢層

農村部の男性と女性
都市部の男性と女性

1000 人あたりの死亡率 ‰

プレゼンターのノート
プレゼンテーションのノート
　データセット　「VADeaths」は、1940 年のバージニア州における 1000 人あたりの年間死亡率です。すなちわ、単位はパーミル（‰）です。数値のマトリックス（行列）です。
　[Environment]タブでマトリックスのデータ構造を確認します（操作）。
　表アイコンをクリックして、ここに示したデータを確認します（操作）。
　年齢層（行）と人口グループ（列）で死亡率を計算してあります。年齢層は50～54歳、55～59歳、60～64歳、65～69歳、70～74歳の 5 行、人口グループは農村部の男性、農村部の女性、都市部の男性、都市部の女性の 4 列です。

標準関数によるグラフ作成：データ

データセット「volcano」
火山（マウンガ・ワウ（マウント・イーデン）、ニュージーランド）の標高（m）のデータ
87 行 61 列のマトリックス（行列）
行は東西の位置、列は南北の位置で 10 m 間隔

126

東西の位置 10 m 間隔

南北の位置 10 m 間隔

標高（m）

プレゼンターのノート
プレゼンテーションのノート
　データセット　「mtcars」は、ニュージーランドにある火山の標高（m）のデータです。マトリックス（行列）です。
　[Environment]タブでデータ構造を確認します（操作）。
　表アイコンをクリックして、ここに示したデータを確認します（操作）。
　87 行 61 列の数値マトリックス（行列）です。�　行は東西の位置、列は南北の位置で、いずれも 10 m 間隔です�

標準関数によるグラフ作成：データ

データセット「HairEyeColor」
統計学を専攻する学生 592 人の、髪の色、目の色を性別で集計した分割表
テーブルオブジェクト（4×4 分割表が２つ）

因子と水準

127

因子 水準
Hair Black, Brown, Red, Blond
Eye Brown, Blue, Hazel, Green
Sex Male, Female

(ii)

Console に入力

テーブルオブジェクト

4 × 4 × 2

(i)［Environment］タブの表示

プレゼンターのノート
プレゼンテーションのノート
　データセット　「HairEyeColor」は、学生の髪の色と目の色を男女別にクロス集計した分割表です。テーブルオブジェクトです。
　因子 Hair は4水準、因子 Eye も 4 水準、Sex は男女の 2 水準です。
　(i) [Environment]タブでデータ構造を確認します（操作）。
　テーブルオブジェクトで、4×4×2 の分割表です。4×4 の分割表が２つあります。
　(ii) 「HairEyeColor」 を Console に入力して内容を確認します（操作）。　

標準関数によるグラフ作成 (1)

標準関数：(1)散布図（Scatter Plot）、plot()、coplot()
(a) iris：アイリスのがく片の幅と長さの層別散布図（3品種による層別）を plot() で作成
因子ベクトルの内部コード（1, 2, 3）を条件変数として層別

128
（my_base_graphics3.R：21-38）

2.0 2.5 3.0 3.5 4.0

4.
5

5.
5

6.
5

7.
5

iris$Sepal.Width

iri
s$

S
ep

al
.L

en
gt

h

既定値は las=0
las = 1 により軸に水平

Species は因子ベクトル
内部コード(1,2,3)が col に
渡される
別の識別方法

pch = iris$Species

(a-1)層別散布図

プレゼンターのノート
プレゼンテーションのノート
　(1) 散布図を関数 plot() で作成します。また、関数 coplot() についても説明します。
　(a) iris　で、アイリスのがく片の長さと幅の関係について、品種を条件変数とした層別散布図を作成します。
　３種類のスクリプト　(a-1) (a-2) (a-3) を示してありますが、ほぼ同じ層別散布図を得ます。
　25～26 行目で、plot() により層別散布図 (a-1) を得ます（操作）。　
　引数 col に iris$Species を渡しています。Species が因子ベクトルであるため、引数 col には因子ベクトルの内部コードである 1, 2, 3 が渡されます。したがって、記号の色は、1:黒、2:赤、3:緑になります。同じ仕組みを使って、pch=iris$Species にすると記号の種類で区別することも可能です。
 29～34 行目で、plot() により、層別散布図 (a-1) の外観をカスタマイズして (a-2) のグラフを得ます（操作）。
　引数 xlab と ylab により軸ラベルを設定します。引数 las の規定値は 0 で軸に平行に表示されますが、 1 を渡すと、y 軸の目盛ラベルが水平に表示されます。
　37～38 行目で、データフレーム iris からがく片の長さと幅のデータを抽出してデータフレーム df に付値し、この df を plot() に渡すことにより (a-1) と同様の層別散布図を得ます（操作）。

標準関数によるグラフ作成 (1)

標準関数：(1)散布図（Scatter Plot）、plot()、coplot()
(b) iris：アイリスのがく片の幅と長さの層別散布図（3品種による層別）を plot() で作成
因子ベクトルの内部コード（1, 2, 3）を条件変数として層別
関数 legend() を用いて凡例を追加

129
（my_base_graphics3.R：40-52）

2.0 3.0 4.0 5.0

4.
5

5.
5

6.
5

7.
5

iris$Sepal.Width

iri
s$

S
ep

al
.L

en
gt

Species
setosa
versicolor
virginica

凡例の位置 topright

(b)層別散布図

凡例のスペースを確保

内部コード（1, 2, 3）が
渡される

品種名が渡される

内部コード（1, 2, 3）が
渡される
凡例のスペースを確保

プレゼンターのノート
プレゼンテーションのノート
　 (b) 前のスライドで得た 層別散布図 (a-1) に、関数 legend() により凡例を追加します。
　42～45 行目で、plot() により層別散布図を得ます（操作）。　
　凡例のスペースを確保するために、xlim に c(2,5.5) を渡しています。
　47～52 行目で、関数 legend() により凡例を追加します（操作）。
　関数 legend() の中では、43 行目のように因子ベクトルの内部コード（1,2,3）が渡せません。そこで、unique() と as.numeric() を使って内部コードを引数 col に渡します。
　引数 legend には、関数 levels を使い、因子ベクトルの水準名を渡して凡例に表示させています。

標準関数によるグラフ作成 (1)

標準関数：(1)散布図（Scatter Plot）、plot()、coplot()
(c) iris：アイリスのがく片の幅と長さの層別散布図（3品種による層別）を plot() で作成
因子ベクトルの内部コード（1, 2, 3）を条件変数として層別
関数 dataEllipse() を用いて 50% 確率楕円を追加（パッケージ car をインストールしておく）

130
（my_base_graphics3.R：54-68）

2.0 2.5 3.0 3.5 4.0

4.
5

5.
5

6.
5

7.
5

iris$Sepal.Width

iri
s$

S
ep

al
.L

en
gt

setosa

versicolor

virginica

(c)層別散布図と確率楕円

内部コード（1, 2, 3）が
渡される

パッケージ car を
ロード

プレゼンターのノート
プレゼンテーションのノート
　(c) 前々のスライドで得た層別散布図 (a-1) に、50% 確率楕円を追加します。確率楕円を描くために、ここでは関数 dataEllpse() を使います。
　関数 dataEllpse() が属しているパッケージ car を事前にインストールします（操作）。
　56 行目で、関数 librqry() により、パッケージ car をロードして関数 dataEllipse() を使えるようにします。
　58～60 行目で、plot() により層別散布図　(c) を得ます（操作）。　
　62～68 行目で、関数 dataEllipse() により 50% 確率楕円　を追加します（操作）。
　引数 grous にグルーブ化（層別）する条件変数である iris$Species を渡します。
　引数 col には、unique() と as.numeric() を使って内部コード 1, 2, 3 を渡しています。
　dataEllipse() は高水準関数なので、plot() で描いたグラフに重ね書きするために、引数 add に TRUE を渡します。

標準関数：(1)散布図（Scatter Plot）、plot()、coplot()
(d) iris：アイリスのがく片の幅と長さの層別散布図
 関数 subset() と points() を使って抽出、points() で描画

標準関数によるグラフ作成 (1)

131

2.0 2.5 3.0 3.5 4.0 4.5
4

5

6

7

8

がく片の幅

が
く
片

の
長

さ

(d)層別散布図
2.0 2.5 3.0 3.5 4.0 4.5

4

5

6

7

8

がく片の幅

が
く
片

の
長

さ

（my_base_graphics3.R：70-89）

for 文の利用も可

x = NA でプロットなし
散布図の枠を作成

(d)層別散布図

プレゼンターのノート
プレゼンテーションのノート
　(d) 前のスライドと同様に plot() で散布図 (a) を得ます。ここでは関数 subset() と points() を使ってデータを抽出し、関数 points() を使って3 品種を区別する層別散布図 (d) を得ます。
　72～77 行目で、plot() の引数 x に NA を渡していて、データをプロットすることなく、右上の枠のみのグラフを得ます（操作）。
　これは、type = "n" と同じ効果があります。
　79～81 行目で、関数 subset() で品種 setosa のデータを抽出し、関数 points() によりプロットします（操作）。
　83～85 行目で、関数 subset() で品種 versicolor のデータを抽出し、関数 points() によりプロットを追加します（操作）。
　87～89 行目で、関数 subset() で品種 vergomoca のデータを抽出し、関数 points() によりプロットを追加します（操作）。
　なお、79～89 行目までを for 文で簡潔に書き換えることもできます。

標準関数によるグラフ作成 (1)

標準関数：(1)散布図（Scatter Plot）、plot()、coplot()
(e) iris：アイリスのがく片の幅と長さの層別散布図（3品種による層別）
 3品種を区別する記号の形と色の指定

132

2.0 3.0 4.0 5.0

4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0

がく片の幅

が
く
の

長
さ

品 種

setosa
versicolor
virginica

（my_base_graphics3.R：91-112）

(e)層別散布図3 品種ごとに
記号の形と
色を定義

3 品種ごとの
記号の形と色

プレゼンターのノート
プレゼンテーションのノート
　(e)前のスライドと同様に plot() で散布図 (a) を得ます。ここでは 3 品種を区別する記号と色をあらかじめ定義して、plot() により層別散布図 (e) を得ます。
　92～93 行目で、3 品種ごとにマーカ-の形状と色を定義して、pch_num と col_name に付値します（操作）。
　因子ベクトル Species の品種の順序は setosa、versicolor、virginica です。したがって、この順序で記号の形状は 16, 17, 18、記号の色は "orange", "blue", "green" に定義されます。
　95～102 行目で、plot() により散布図を描きます（操作）。
　引数 pch に pch_numを渡します。引数 col に col_name を渡します。これにより、プロットされるごとに、品種に対応した値が引数 pch と col に渡されます。
　104～112 行目で、関数 legend() により凡例を追加します（操作）。
　関数 plot() と同様に、引数 pch に pch_numを渡します。col に col_name を渡して、凡例の中で表示します。

2.0 3.0 4.0

4.
5

5.
5

6.
5

7.
5

2.0 3.0 4.0

2.0 3.0 4.0

がく片の幅

が
く
片

の
長

さ

setosa
versicolor

virginica

Given : Species

標準関数によるグラフ作成 (1)

標準関数：(1)散布図（Scatter Plot）、plot()、coplot()
(f) iris：アイリスのがく片の幅と長さの層別散布図を coplot() で作成
 ３品種ごとに別々のグラフ（パネル）で散布図を得る

（マルチパネル、ファセット）
関数 coplot() に渡す数式

coplot(y ~ x | g)
パッケージ latticeの関数の利用を検討

133
（my_base_graphics3.R：114-123）

(f)

パネル

プレゼンターのノート
プレゼンテーションのノート
　(f) 品種ごとに別々の散布図 (f) を得ます。これをマルチパネル、ファセットなどと呼ばれます。このグラフを得るために、標準関数 coplot() を用います。
　117～123 行目で、関数 coplot() により、アヤメのがく片の幅と長さの散布図を、3品種ごとに別々のパネルで描きます（操作）。
　同様な散布図は、パッケージ lattice の関数で簡単に得られます。coplot() は古くからある関数で、Trellis グラフィックスの“前身”のような位置づけであり、拡張性も低く、機能は限定的です。したがって、coplot() を使うのであれば、Trellis グラフィックスの正式な実装である lattice パッケージの関数の利用を勧めます。

標準関数によるグラフ作成 (1)

標準関数：(1)散布図（Scatter Plot）
関数のヘルプの利用方法

(i) 関数にカーソルを合わせて F1 キーを押す
(ii) Console 上で ?coplotを実行
(iii) Console 上で help(coplot)を実行

ヘルプの内容
Description, Usage, Arguments, Details,
Value, Rferences, See Also, Example

AI の利用
自分で考えてから利用

134
（my_base_graphics3.R：109-115）

カーソルを置いて
F1 キーを押す

［Help］を開く

関数名
{パッケージ名}

プレゼンターのノート
プレゼンテーションのノート
　先ほど、関数 plot() のヘルプを参照しました。
　ここでは、新しく出てきた関数 coplot() のヘルプを参照して、ヘルプの見方を再度説明します。
　次の３つの方法で coplot() のヘルプを開きます。
 (i) [Source エディタ] または Console に表示されている「coplot」 にカーソルを置いて、 F1 キーを押します（操作）。
　(ii) Console 上で 「?coplot」 を入力して実行します（操作）。
　(iii) Console 上で、「help(coplot)」 を入力して実行します（操作）。
　 [Help] タブに関数 coplot のヘルプが表示されるので、全体に目を通します。
　トップから下方に見ていくと、Description, Usage, Arguments があります。さらにその下に, Details, Value, Rferences, See Also, Example があります。ここで、関数の利用目的、引数の使い方、サンプルコードなどを利用します。それぞれの見方は、「R と RStudio の使い方－1」と「R と RStudio の使い方－2」で説明済みです。�　この後、各関数の不明な点はヘルプを参照するか、AI を活用して理解を図ってください。

標準関数：(2) 散布図行列（Scatterplot Matrix）、pairs()
(a) mtcars：32 車種の燃費、馬力、重量の散布図行列を作成

列名：mpg（燃費）、hp（馬力）、wt（重量）
引数 labels：対角線上に表示する列名
引数 cex.labels：labels の文字サイズを指定

燃費

50
15

0
25

0

10 20 30

50 150 250

馬力

10
20

30

2 3 4 5

2
3

4
5

重量

標準関数によるグラフ作成 (2)

135
（my_base_graphics3.R：126-131）

ラベルラベル

(a)散布図行列

プレゼンターのノート
プレゼンテーションのノート
　(2) 散布図行列を、関数 pairs() で描きます。
　(a) シンプルな散布図行列 (a) を得ます。データセット mtcars を用い、32 車種の mpg, hp, wt の相関関係を可視化します。mpg, hp, wt は、それぞれ燃費、馬力、重量です。
　129～131 行目で、関数 pairs() により、 散布図行列 (a) を得ます（操作）。　
　引数 labels には、角線上に表示する文字ベクトルを渡します。この文字ラベルのサイズは、引数 cex.labels で、規定値 1 を中心に制御します。

燃費

50
20

0

10 20 30

50 200

0.78

馬力

10
20

30

0.8

0.66

2 3 4 5

2
3

4
5

重量

標準関数：(2) 散布図行列
(b) mtcars：燃費、馬力、重量の散布図行列

パネル関数によるヒストグラムと相関係数の追加

標準関数によるグラフ作成 (2)

136
（my_base_graphics3.R：133-158）

(b)散布図行列
相関係数を
表示する
パネル関数

ヒストグラムを
表示する
パネル関数

プレゼンターのノート
プレゼンテーションのノート
　(b) 前のスライドで作成した散布図行列 (a) に、相関係数とヒストグラムを追加します。
　ここでは、「パネル関数」を使っています。パネル関数の詳細については省略します。パネル関数という概念は、パッケージ lattice を参照してください。
　135～143 行目で、相関係数を表示するパネル関数を定義します（操作）。
　144～153 行目で、ヒストグラムを表示するパネル関数を定義します（操作）。
　155～158 行目で、pairs() により散布図行列を得ます（操作）。
　引数 diag.panel に相関係数を表示するパネル関数を渡します。引数 upper.pane にlヒストグラムを表示するパネル関数を渡します。

標準関数によるグラフ作成 (3)

標準関数：(3) 線グラフ（Line Graph）、plot()、points()、matplot()
(a) mtcars：32 車種のシリンダー数ごとの燃費（平均値）の折れ線グラフを plot() で作成

関数 aggregate() を用いて、シリンダー数（cyl）ごとの燃費（mpg）の平均値を算出

137

4 5 6 7 8

16

18

20

22

24

26

シリンダー数

燃
費

（my_base_graphics3.R：161-176）

データフレーム
agg_out

(a)折れ線グラフ

type = "l"
線グラフを指定

プレゼンターのノート
プレゼンテーションのノート
　(3) 線グラフを取り上げます。
　(a) データセット mtcars で、32 車種のシリンダー数ごとの燃費の平均値を計算し、これをプロットして線で結びます。
　166～168 行目で、関数 aggregate() により、cyl ごとに mpg の平均値を計算して、オブジェクト agg_out に付値します（操作）。
　170 行目で、データフレーム agg_out の中身を表示させると、右の出力を得ます（操作）。
　agg_out は、列名が cly と mpg の２つの列から成るデータフレームです。
　172～176 行目で、関数 plot() の引数 type に "l" （エル）を渡して折れ線グラフ (a) を得ます（操作）。

3 4 5 6 7 8 9

15
20

25
30

シリンダー数

燃
費

トランスミ

automatic
manual

標準関数によるグラフ作成 (3)

標準関数：(3) 線グラフ（Line Graph）、plot()、points()、matplot()
(b) mtcars：32 車種のシリンダー数（cyl）と燃費（mpg）の平均値との関係を、

トランスミッション（am）ごとの折れ線グラフ
で可視化

138
（my_base_graphics3.R：178-199）

データフレーム
agg_out

(b)折れ線グラフ

プレゼンターのノート
プレゼンテーションのノート
　(b) データセット mtcars の 32 車種について、シリンダー数とトランスミッションごとの燃費の平均値を計算し、これを可視化します。
　181～182 行目で、関数 aggregate() により、mpg の平均値を cyl と am ごとに計算して、オブジェクト agg_out に付値します（操作）。
　183 行目で、print() により agg_out の中身を表示させて、右の出力を得ます（操作）。
　agg_out は、3つの数値ベクトル am, cly, mpg から成るデータフレームです。
　185～189 行目で、plot() の引数 type に "o" （オー）を渡してオレンジの折れ線グラフ (b) を得ます（操作）。
　引数 subset に agg_out$am == 0 を渡して、トランスミッションが 0 (オートマティック車) のデータを抽出します。
　191～193 行目で、points() の引数 type に "o" （オー）を渡して、ブルーの折れ線を追加して折れ線グラフ (b) を得ます（操作）。
　引数 subset に agg_out$am == 1 を渡して、トランスミッションが 1(マニュアル車) のデータを抽出します。
　195～199 行目で、legend() により凡例を追加します（操作）。

標準関数によるグラフ作成 (3)

標準関数：(3) 線グラフ（Line Graph）、plot()、points()、matplot()
(c) ランダムウォーク（random walk、時系列データ）の線グラフ

matplot() で複数系列を一つのグラフ領域に重ねて表示

139

0 10 20 30 40 50

100

120

140

160

180

時間

累
積

和

系列
y1
y2
y3

(c)

() をつけると
pirnt() と同じ機能

（my_base_graphics3.R：201-220）

平均 0、標準偏差 5 の
正規分布から50 個の
乱数を生成、その累積和

プレゼンターのノート
プレゼンテーションのノート
　(c) 関数 matplot() を使ってランダムフォークの線グラフを得ます。ランダムウォークは、次の位置がランダムに決定される時系列データです。
　203 行目で、t に 1, 2, 3,・・・49, 50 の時間を設定します（操作）。
　204～206 行目で、3つのランダムウォーク y1, y2, y3 を生成します（操作）。
　rnorm(50, 0, 5) は、平均 0、標準偏差 5 の正規分布から、50 個の乱数を生成します。cumsum() は、生成したランダムな値の累積和を計算します。これにより、それぞれ 50 個のデータから成るランダムウォーク y1, y2, y3 を作成します。これらの時系列データは、100を初期値としてスタートし、ランダムに変動しながら進行します。このランダムウォークは、現実世界の様々な現象をモデル化するために広く利用されています。
　なお、乱数を使用するので、実行ごとに異なるランダムフォークが得られるため、グラフも実行ごとに異なります。
　207 行目で、3つの異なるランダムウォーク y1, y2, y3 を集めて、マトリックス（行列）mx を作成します（操作）。
　207 行目全体に () が付いているので、print(mx) と同様に右上の出力を得ます。
　209～213 行目で、matplot() により、引数 x に数値ベクトル t、引数 y にマトリックス mx を渡して、折れ線グラフ (c) を得ます（操作）。
　引数 x と引数 y の名前を省略して位置引数として記述する方法が一般的です。
　215～220 行目で、legend() により凡例を追加します（操作）。

標準関数によるグラフ作成 (4)

標準関数：(4) 散布図の特殊な可視化、sunflowerplot()、symbols()
(a) iris：関数 sunflowerplot() を使い、アヤメのがく片の幅と長さの散布図として、

ひまわりプロット(Sunflower plot)を作成

140
（my_base_graphics3.R：223-235）

(a) ひまわりプロット

2.0 2.5 3.0 3.5 4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

がく片の幅

が
く
片

の
長

さ

同じ位置に複数の点がプロット
されていることを、赤い線分で表示
1 つの重複につき１本の線分

プレゼンターのノート
プレゼンテーションのノート
　(4) 散布図における特殊な可視化として、ヒマワリプロットとバブルチャートを取り上げます。
　(a) ひまわりプロットを関数 sunflowerplot() で得ます。先ほど、データセット iris のがく片の幅と長さの散布図を得ました。実は、このプロットの中で、データの重複により、１つの点に複数のデータが重ね書きされています。通常の散布図では重複を認識できませんが、これを可視化する方法の一つがひまわりプロットです。
　228～235 行目で、sunflowerplot() により、ひまわりプロット (a) を得ます（操作）。
　アヤメのがく片の長さと幅の散布図に、赤い線分が表示されます。この線分がデータの重複を示しています。1つの重複について　１ 本の線分が表示されます。なわち、観測値が 1 個だけの場合は 点のみです。１つの点に観測値が 2 個ある場合は点と線分 1 本です。�　引数 seg.col = "red" て、線分の色を指定します。

標準関数：(4)散布図の特殊な可視化、sunflowerplot()、symbols()
(b) mtcars：関数 symols() を使い、重量（wt）と燃費（mpg）の散布図に

馬力（hp）に対応した円を表示（バブルチャート、bubble chart)

標準関数によるグラフ作成 (4)

141
（my_base_graphics3.R：237-253）

1 2 3 4 5 6

10

15

20

25

30

35

重量

燃
費

Mazda RX4Mazda RX4 Wag

Datsun 710
Hornet 4 Driv e

Hornet SportaboutValiant

Duster 360

Merc 240D
Merc 230

Merc 280
Merc 280C

Merc 450SE
Merc 450SL

Merc 450SLC

Cadillac FleetwLincoln Con

Chry sler Imp

Fiat 128

Honda Civ ic

Toy ota Corolla

Toy ota Corona

Dodge ChallengerAMC Jav elin

Camaro Z28

Pontiac Firebird

Fiat X1-9
Porsche 914-2

Lotus Europa

Ford Pantera L

Ferrari Dino

Maserati Bora

Volv o 142E

円のサイズは馬力を表す

(b) バブルチャート

車種名

各バブルに
車種名を表示

馬力(hp) が
円(バブル) の
大きさに反映

プレゼンターのノート
プレゼンテーションのノート
　(b) バブルチャートを関数 symbols() で得ます。データセット mtcars の「重量（wt）」「燃費（mpg）」「馬力（hp）」の関係を視覚化するために、重量と燃費の散布図に馬力の大きさを表した円を表示します。これがバブルチャートです。
　239～246 行目で、symbols() により、バブルチャート (b) を得ます（操作）。
　引数 circles に mtcars$hp を渡すことで、馬力の大きさが円（バブル）の大きさ（半径）に反映します。馬力が大きい車ほど大きい円で表示されます。　
　引数 inches = 0.3 で、円の最大半径を「0.3 インチ」にスケーリングします。この値を調整することで、図中の円の大きさのバランスを整えることができます。
　引数 fg = "white" で円の枠線の色を白に指定します。引数 bg = "steelblue" で、円の塗りつぶし色を指定します。
　248～250 行目で、text() により、グラフの中のそれそれのバブルに、対応する車種を記入します（操作）。
　241～242 行目で、text() により、「円のサイズは馬力を表す」と注釈を入れます（操作）。

標準関数によるグラフ作成 (5)

標準関数：(5) 箱ひげ図（Box Plot）、boxplot()、plot()
連続変数の分布を箱ひげ図（ Box Plot , Box-and-Whisker Plot）で可視化

使い方 plot(y ~ grp) ・・・ y：数値ベクトル、grp：グループを表す因子ベクトル
boxplot(y ~ grp) ・・ y：数値ベクトル、grp：グループを表す因子ベクトル
boxplot(x) ・・・ x：数値ベクトル（１変数の箱ひげ図）
boxplot(list(GroupA = x1, GroupB = x2, GroupC = x3)) ・・・x1, x2, x3：数値ベクトル
boxplot(mx) ・・・・ mx：数値マトリックス（列ごとに箱とヒゲを作成）

関数 boxplot() の主な引数
horizontal：TRUE/FALSE（箱が水平方向／垂直方向（既定値））
boxwex：すべてのボックスに適用されるスケール係数、箱の相対的な幅、規定値は 0.8
notch：TRUE/FALSE（箱にノッチ(くびれ)を付加／付加なし(既定値)）
range：ヒゲの長さと外れ値の判定に用いる係数(既定値 1.5)、names：箱の下に表示する名前
outline：TRUE/FALSE（外れ値表示(既定値)／非表示）、col, border：箱の背景色、箱枠の色

142

プレゼンターのノート
プレゼンテーションのノート
　(5) 箱ひげ図を取り上げます。
　関数 plot() による箱ひげ図の作成を説明しました。同様に、関数 boxplot() でも箱ひげ図が得られます。　
　plot() と同様に、boxplot() にも y~grp の形でデータを渡します。y が数値ベクトル、grp が因子ベクトルです。データフレームの列を渡して、data にデータフレームの名前を渡すこともできます。
　単一変数、リストにまとめた複数変数、行列を渡すこともできます。
　引数 horizontal にTRUEを渡すと箱ひげ図が横向きになります。規定値はFALSE（縦向き）です。�　引数 boxwex に数値を渡して、すべてのボックスの幅の大きさを調整します。規定値は0.8です。グループ数が少ない場合は、ボックスを狭くすることでプロットの見栄えを改善できます。
　引数 notch にTRUEを渡すと、ノッチ（くびれ）付きの箱ひげ図になります。ノッチが重ならない場合、中央値に有意差がある可能性を示唆します。
　引数 range でヒゲの長さを制御します。規定値は 1.5 で、箱の高さ（四分位範囲）の1.5倍までをひげの範囲とします。0 にすると全データ範囲までヒゲが伸びます。

標準関数によるグラフ作成 (5)

標準関数：(5) 箱ひげ図（Box Plot）、boxplot()、plot()
(a) iris：がく片の長さの分布を表す箱ひげ図

143
（my_base_graphics3.R：256-275） 4.5 5.5 6.5 7.54.

5
5.

5
6.

5
7.

5

se
to

sa
ve

rs
ic

ol
or

vi
rg

in
ic

a

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Sepal.Length

S
pe

ci
es

setosa versicolor virginica

4.
5

5.
5

6.
5

7.
5

Species

S
ep

al
.L

en
gt

h

(a-1) (a-2) 箱ひげ図 (a-3)箱ひげ図

(a-4) 箱ひげ図 (a-5)箱ひげ図

プレゼンターのノート
プレゼンテーションのノート
 (a-1) (a-2) (a-3) の箱ひげ図は、アヤメのがく片の長さの分布を、品種ごとに可視化しています。(a-4) (a-5) の箱ひげ図は、アヤメのがく片の長さの分布を 3 品種込みで可視化しています。
　260～261 行目で、関数 plot により箱ひげ図 (a-1) を得ます（操作）。
　264～265 行目で、関数 boxplot() により (a-1) と同じ箱ひげ図 (a-2) を得ます（操作）。
　いずれも、規定値で、縦向きの箱ひげ図を得ます。
　268～269 行目で、関数 boxplot() により横向きの箱ひげ図 (a-3) を得ます（操作）。
　272 行目で、関数 boxplot() により、３品種を込みにした縦向きの箱ひげ図 (a-4) を得ます（操作）。
　275 行目で、関数 boxplot() により、３品種を込みにした横向きの箱ひげ図 (a-5) を得ます（操作）。

標準関数によるグラフ作成 (5)

標準関数：(5) 箱ひげ図（Box Plot）、boxplot()、plot()
(b) chickwts：飼料の種類別に鶏の体重の分布を箱ひげ図で可視化

144
（my_base_graphics3.R：277-297）

casein

horsebean

linseed

meatmeal

soybean

sunflower

100 200 300 400

体重

飼
料

外れ値

目盛ラベルを
水平に表示
引数 las=1

(b) 箱ひげ図

mtext() で
表示

プレゼンターのノート
プレゼンテーションのノート
　 (b) データセット chickwts について、飼料の種類別に鶏の体重の分布を箱ひげ図で可視化します。
　278～279　行目で、関数 par() により、現在のグラフィックスパラメータを保存します（操作）。
　280 行目で、関数 par() により、軸ラベルと目盛りラベルを表示させるために、余白の設定を変えます（操作）。
　282～293 行目で、boxplot() により箱ひげ図 (b) の原型を得ます（操作）。
　引数 ylab="" として y軸の軸ラベルを非表示にします。
　引数 las=1 として、目盛ラベルを水平に表示します。
　295 行目で、関数 mtext() により、軸から 3.5 列離れた位置で y 軸の軸ラベル「飼料」を表示します（操作）。
　297 行目で、グラフィックスパラメータを復元します（操作）。

標準関数によるグラフ作成 (6)

標準関数：(6) １次元散布図（Strip Chart）、stripchart()
連続変数の個々の値を点でプロットして分布を可視化（サイズが小さいサンプルに適す）

使い方 stripchart(y ~ g) ・・・y ：数値ベクトル、g：因子ベクトル
stripchart(x)・・・・・x：数値ベクトル（単一の１次元散布図）
stripchart(list(GroupA=x1, GroupB=x2, GropuC=x3) ・・・x1, x2, x3 ：数値ベクトル
stripchart(mx) ・・・・mx：数値マトリックス（列を１グループとして描画）

関数 stripchart()の主な引数
verctical：TRUE/FALSE（垂直方向にプロット／水平方向(規定値)）・・・boxplot() と逆
method："overplot"（重ねて表示、規定値）、"jitter"（散らす）、"stack"（並べる）
jitter：method="jitter" の場合、ばらつかせる量を指定、規定値は 0.1
group.names：因子ベクトルのグループ名
xlab, ylab：横軸（x軸）の軸ラベル、縦軸（y 軸）の軸ラベル
dlab, glab：数値データが表示されている軸のラベル、グループが表示されている軸のラベル

145

x 軸、y 軸に
固定されない

プレゼンターのノート
プレゼンテーションのノート
　(6) １次元散布図を取り上げます。ストリップチャートともいいます。関数 stripplot() を使います。サイズが小さいサンプルの分布を確認する場合に適しています。　なお、plot() でも描けますが、利便性に欠けるので、stripchart() を利用します。
　boxplot() と同様、数値ベクトル、データフレーム、リスト、マトリックスを渡します。
　引数 vertical に TRUE を渡した場合、プロットは垂直に描画されます。規定値は FALSE の水平です。boxplot() の引数 horizontal とは逆の考え方でから注意します。両者を重ねて表示する場合、注意が必要です。
　引数 method に"overplot"を渡すと、データが重複している場合、そのまま同じ位置に重ねてプロットします。重なった点は見えなくなり、1つの点に見えます。これが規定値です。"jitter" を渡すと点をばらつかせる指定になります。そのバラツキの程度は、引数 jitter で調整します。jitter の規定値は 0.1 です。"stack" を渡すと、データが重複している場合、それらを並べて表示します。�　軸ラベルの文字列を渡す引数に、ylab, xlab, dlab, glab があります。引数 vertical で横向き/縦向きを切り替えます。これの切り替えに際して、x 軸と y 軸に固定されず、dlab に渡した文字列が数値データの軸のラベルになります。glab に渡した文字列がグループの軸のラベルになります。仮に、ylab, xlab, dlab, glab を同時に指定した場合、 xlab, ylab　が優先されます。

標準関数によるグラフ作成 (6)

標準関数：(6) １次元散布図（Strip Chart）、stripchart()
(a) 因子ベクトルと数値ベクトルから１次元散布図を作成
（１次元散布図は、サンプルサイズが小さい場合に有効）
(a-1) 横向きの１次元散布図（引数 vertical の規定値）
(a-2) 縦向きの１次元散布図（引数 vertical = TRUE）

146
A B C

5
6

7
8

9
10

ob
s

（my_base_graphics3.R：300-310）

5 6 7 8 9 10
A

B

C

obs

(a-1)１次元散布図

 (a-2)１次元散布図

目盛ラベルを
水平に表示
引数 las=1

group obs
A 5
A 7
A 8
B 6
B 9
B 10
C 8
C 10
C 11

人工データ

プレゼンターのノート
プレゼンテーションのノート
　(a-1) の横向きの１次元散布図と、 (a-2) の縦向きの１次元散布図を得ます。
　用いるデータは、ここに示した表の人工データです。３試験区（A, B, C）で得られた観測値の分布を可視化します。１次元散布図は、このようにサンプルサイズが小さい場合に適しています。サンプルサイズが大きい場合は、ヒストグラムを用います。
　303～304 行目で、オブジェクト group に試験区名を付値して因子ベクトルを得ます。obs に数値データを付値して数値ベクトルを作成します（操作）。
　(a-1) 横向きの１次元散布図を得ます。
　307 行目で、stripchart() により、「obs~group」を渡して横向きの１次元散布図 (a-1) を得ます（操作）。
　引数 vertical の規定値 FALSE の状態で、横向きになります。
　(a-2) 縦向きの１次元散布図を得ます。
　310　行目で、stripchart() により、「obs~group」を渡して縦向きの１次元散布図 (a-2) を得ます（操作）。
　引数 vertical に TRUE を渡して縦向きにします。

標準関数によるグラフ作成 (6)

標準関数：(6) １次元散布図（Strip Chart）、stripchart()
(b) PlantGrowth：３試験区の植物の生長量の分布を１次元散布図で可視化

 （試験区：対照、処理１、処理２）

147
（my_base_graphics3.R：312-325）

3.5

4.0

4.5

5.0

5.5

6.0

試験区

生
長

量

対照 処理1 処理2

(b)１次元散布図

目盛ラベル

目盛ラベルを
非表示

目盛ラベル

プレゼンターのノート
プレゼンテーションのノート
　(b) データセット PlantGrowth を用い、３試験区（対照区、処理区 1, 処理区 2）で得られた植物の生長量の分布を１次元散布図で可視化します。
　313～322 行目で、stripchart() により、縦向きの１次元散布図 (b) の原型を得ます（操作）。
　引数 xaxt に "n" を渡すことにより、x 軸の目盛ラベルを非表示にします。
　324　行目で、関数 axis0 により、 x 軸の目盛ラベルを表示して１次元散布図 (b) を得ます。

標準関数によるグラフ作成 (6)

標準関数：(6) １次元散布図（Strip Chart）、stripchart()
(c) chickwts：6種類の飼料を鶏に与えて、6週間後の体重を測定、測定値の分布を可視化
１次元散布図に箱ひげ図を追加（boxplot() は stripchat() で設定した x 軸とy軸に従って描画）

148

ca
se

in

ho
rs

eb
ea

n

lin
se

ed

m
ea

tm
ea

l

so
yb

ea
n

su
nf

lo
w

er

100

150

200

250

300

350

400

w
ei

gh
t

（my_base_graphics3.R：327-344）

目盛ラベル
サイズ 0.8

(c)１次元散布図と箱ひげ図

上書きを指定

必須

プレゼンターのノート
プレゼンテーションのノート
　(c) 1次元散布図と箱ひげ図を組み合わせて表示します。データセット chickwts において、6 種類の飼料を鶏に与えた雛の体重を可視化します。
　328～335 行目で、関数 stripchart() により1次元散布図 (c) の原型を得ます（操作）。
　引数 vertical = TRUE を指定して、箱ひげ図の縦向きのグラフに合わせます。
　x 軸に飼料名を記載するために、las=2 として x 軸の目盛ラベルを垂直に表示します。また、cex.axis=0.8 として文字サイズをやや小さくしています。
　337～344 行目で、関数 boxplot() により箱ひげ図を重て複合したグラフ (c) を得ます（操作）。
　boxplot() は高水準関数なので、1次元散布図に上書きするために、引数 add=TRUE を指定します。 boxplot() は stripchat() で設定した x 軸と y 軸に従って作図します。
　

標準関数によるグラフ作成 (7)

標準関数：(7) ヒストグラム（Histogram）、hist()
連続変数の分布を柱状グラフで可視化

使い方 hist(x) ・・・x：数値ベクトル（数値変数、ランダムに得たサンプル）

関数 hist() の主な引数
breaks：境界値を示す数値ベクトル、境界値を計算する関数、区間の数を示す数値（概数）、

区間を計算するアルゴリズム（"Sturges"(既定値), "Scott", "FD"(Freedman-Diaconis)）
freq：TRUE/FALSE（縦軸が度数／確率密度）、breaks が等距離の場合に既定値は TRUE

breaks が等距離でない場合に既定値は FALSE
probability：使用は非推奨、probability=TRUE は freq=FALSE と同じ意味
right：TRUE/FALSE（区間の境界値は右閉じ左開き（既定値）／右開き左閉じ）
col, border,：バーの背景色、バーの境界線の色
plot：TRUE/FALSE（描画（既定値）／描画せず区間と度数が返される）

149

[a, b) の区間
b の値は

その区間に含まれる

プレゼンターのノート
プレゼンテーションのノート
　(7) ヒストグラムを取り上げます。関数 hist() を使います。
　ある集団から無作為に得たサンプルの数値ベクトル x を hist() に渡します。
　引数 breaks に、ヒストグラムの区間の境界値を示す数値ベクトル、区間の数を示す数値、区間の数を計算するアルゴリズムを渡します。区間の数は概数で、必ず指定した数値の区間数になるわけではありません。区間を計算するアルゴリズムは、"Sturges", "Scott", "FD" を渡すことができます。Sturges が既定値です。具体的な方法は、次のスライドで実例を使って説明します。 �　引数 freq には論理値を渡します。breaks が等距離の場合、既定値は TRUE で度数になります。breaks が等距離でない場合、既定値は FALSE で確率密度（Density）になり、面積が 1 になるように正規化されるため、密度曲線と重ねるときに便利ます。
　なお、probability という引数がありまずか、使用は非推奨です。古いスクリプトで使われていることがあります。probability=TRUE は freq=FALSE と同じ意味があります。
　引数 right には、論理値を渡します。既定値は TRUE で、区間の境界値は「左開き右閉じ」になります。これは、左側の境界値を含まず、右側の境界値を含む区間です。つまり [a, b) の区間で、b の値はその区間に含まれ、a の値はその区間に含まれません。FALSE にするとその逆になります。通常、日本では FALSE のヒストグラムを用います。

標準関数によるグラフ作成 (7)

標準関数：(7) ヒストグラム（Histogram）、hist()
ヒストグラムの各部分の名称（ヘルプを参照するときに利用）

bin、cell ：階級、区間
binning ：階級に分けること
breakpoint ：境界値（分割点）
breaks ：境界値の集まり
mids ：階級値、階級の中央の値

通常は平均値
counts ：各階級の度数

150

iris$Sepal.Length
Fr

eq
ue

nc
y

4 5 6 7 8

0
10

20
30

階級, 区間
(bin, cell)

Frequency：度数
density：確率密度

境界値
(breakpoint)

階級値
(mids)

プレゼンターのノート
プレゼンテーションのノート
　ヒストグラムの各部分の名称を表と図に示します。ヘルプを参照するときに利用します。
　ヒストグラムの１本の柱を階級、区間、ビンといいます。セルという場合もあります。階級に分けることをビニングといいます。この境界値を breakpoints と呼び、この集まりを breaks と言います。
　階級値 (mids) は各階級の中点です。通常は、階級の境界値の平均です。

標準関数によるグラフ作成 (7)

標準関数：(7) ヒストグラム（Histogram）、hist()
(a) iris：品種 "setosa" のがく片の長さの分布をヒストグラムで可視化

引数 breaks の使い方 (a-1)～(a-5)

151

Histogram of v

がく片の長さ

度
数

4.5 5.0 5.5

0
2

4
6

8
10

Histogram of v

v

D
en

si
ty

3 4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

（my_base_graphics3.R：347-365）

(a-1)ヒストグラム

(a-4)ヒストグラム

不等間隔の
境界値の場合

自動的に
確率密度に設定

品種 "setosa" の
がく片の長さを

抽出

プレゼンターのノート
プレゼンテーションのノート
　hist() 関数の引数 breaks の使い方を示します。スクリプトに示した (a-1)～(a-5) のヒストグラムを得ます。データセット iris において、品種"setosa"のがく片の長さの分布をヒストグラムで可視化します。
　350 行目で、データセット iris から品種 "setosa" のがく片の長さを抽出して、オブジェクト v に付値して数値ベクトルを作成します（操作）。
　353 行目で、breaks の設定がない場合、規定値の "Sturges" の計算式を使ったヒストグラム (a-1) を得ます（操作）。。
　356 行目で、breaks に数値を渡すと、その数値に近い数の階級のヒストグラム (a-2) を得ます（操作）。
　359 行目で、breaks に等間隔の境界値を表す数値ベクトルを渡してヒストグラム (a-3) を得ます（操作）。。
　362 行目で、breaks に不等間隔の境界値を表す数値ベクトルを渡してヒストグラム (a-4) を得ます（操作）。
　等間隔ではない境界値の場合、自動的に縦軸は確率密度 (Dencity) になります
　365　行目で、breaks に境界値の計算式 "Scott"を渡してヒストグラム (a-5) を得ます（操作）。

標準関数によるグラフ作成 (7)

標準関数：(7) ヒストグラム（Histogram）、hist()
(b) iris：品種 "setosa" のがく片の長さの分布をヒストグラムで可視化

ヒストグラムに正規分布、カーネル密度推定(KDE)による密度曲線を重ねる

152

(b)ヒストグラムと正規分布

がく片の長さ

D
en

si
ty

4.0 4.5 5.0 5.5 6.0

0.
0

0.
4

0.
8

1

品種 "setosa" の
がく片の長さを

抽出

（my_base_graphics3.R：367-385）

プレゼンターのノート
プレゼンテーションのノート
　(b) 前のスライドで得られた ヒストグラム (a-1) に、正規分布の密度曲線と、カーネル密度推定(KDE)による密度曲線を重ねます。
　369 行目で、データセット iris から品種 "setosa" のがく片の長さを抽出して、オブジェクト y に付値して数値ベクトルを作成します（操作）。
　371～377 行目で、ヒストグラム (b) を得ます（操作）。
　引数 freq に FALSE を渡して、縦軸を確率密度に指定します。確率密度曲線を追加するためです。
　引数 xlim を指定して x 軸の範囲を渡します。
　379 行目で、分布の平均値 m と標準偏差 s を計算します（操作）。
　380～382 行目で、関数 curve() により、平均 m、標準偏差 s の正規分布の確率密度曲線を追加します（操作）。
　関数 curve() は高水準関数なので、add=TRUE を指定して上書します。
　関数 dnorm() の平均 mean と標準偏差 sd にそれぞれ m と s を渡します。
　関数 curve() は、関数 hist() で設定した x 軸と y 軸に従って作図します。
　384～385 行目で、関数 lines() と density() により、カーネル密度推定(KDE)による確率密度曲線を追加します（操作）。

品 種 ： setosa

がく片の長さ

度
数

4 5 6 7 8

0
5

15
25

平均 5.01

品 種 ： versico lor

がく片の長さ

度
数

4 5 6 7 8

0
5

15
25

平均 5.94

品 種 ： virg in ica

がく片の長さ

度
数

4 5 6 7 8

0
5

15
25

平均 6.59

標準関数：(7) ヒストグラム（Histogram）、hist()
(c) iris：がく片の長さの品種別ヒストグラム（マルチパネル）

標準関数によるグラフ作成 (7)

153
（my_base_graphics3.R：387-408）

(c)ヒストグラム

par("usr") は
プロット領域の

x 軸と y 軸の座標

第 4 要素 [4] は
y2(上限、最大値)

"setosa"
"versicolor"
"virginica"

3つの品種名を
順番に s に付値

プレゼンターのノート
プレゼンテーションのノート
　(c) iris の 3 品種ごとに、がく片の長さのヒストグラムを別々に並べて表示します。
　389 行目で、作図領域を 3 行 1 列に分割します（操作）。
　391 行目で、３つの品種名を抽出してオブジェクト sp_names に付値します（操作）。
　関数 unique は重複を除いた値を取得するので、Species の列から"setosa"、"versicolor"、"virginica" が抽出れさ、この順序で sp_names に付値されます。
　392 行目で、x 軸と y 軸の最小値と最大値を x1, x2, y1, y2 に付値します（操作）。
　394～407 行目で、3 品種ごとにヒストグラムを描き、そこに平均値の位置を示す縦線と、その値を表示します（操作）。
　for 文で繰返し処理をします。sp_names 内の文字列を１つずつ順番に取り出して s に代入し、{ } 内のコードを、sp_names に含まれる最後の文字列まで反復します。
　関数 subsetで、s に代入された品種のがく片の長さのデータを抽出して、y に付値します。この y の平均値を m に付値します。
　関数 hist()　で v のヒストグラムを描画します。関数 abline() で、平均値の位置に縦線を表示します。関数 text で、引数 x,y の座標に平均値を表示します。par("usr") は、プロット領域の座標範囲を 4 要素からなるベクトルで返します。その第4要素 [4] はプロット領域のY軸の上限（最大値）です。この上限に 0.8 を掛けることで、y 軸の上部から 20% ほど下がった位置にテキストを配置します。
　408 行目で、作図領域の分割をリセットします（操作）。

標準関数によるグラフ作成 (8)

標準関数：(8) 幹葉図（Stem-and-Leaf Plot）、stem()
Console にテキストベースで分布を素早く簡便に表示
「|」の左側：幹、実際の値、小数点の位置は１桁目
「|」の右側：葉、０でデータ数を表示

iris：品種 setosa のがく片の長さの幹葉図

154
（my_base_graphics3.R：411-418）

(i) データ（昇順）
(ii)

(iii)

4.4～4.5 のデータ 4 つ

幹（Stem） 葉（Leaf）

scale = 1

4.4～4.5 の
データ 4 つ

プレゼンターのノート
プレゼンテーションのノート
　(8) 幹葉図を取り上げます。幹葉図を作成するには、関数 stem() を用います。hist() や boxplot() と異なり、stem() は[Plots]タブではなく、Console にテキストベースで分布を素早く簡便に表示します。
　データセット iris の品種 setosa で、がく片の長さの分布を幹葉図で可視化します。
　414 行目で、iris から品種 "setosa" のがく片の長さのデータを抽出して、オブジェクト y に付値して数値ベクトルを作成します（操作）。
　415 行目で、関数 sort() により、数値ベクトル y を昇順にソートして表示させて、(i) の出力を得ます（操作）。
　データは 4.3～５.８まで 50 個あり、オレンジ枠で示したように 4.4～4.5 のデータは 4 つあります。
　417 行目で、関数 stem()　により、数値ベクトル　y の幹葉図 (ii) を得ます（操作）。
　「|」の左側にある実際の値が「幹」です。42、44、46 と 2 刻みですが、実際の値は、4.2、4.4、4.6 で 0.2 刻みです。表示の (i) と (ii) においてオレンジ枠で示したように、44 は 4.4～4.5 の範囲になります。「|」の右側の数値が「葉」で、０が 4 つあるので、データは 4 つあることが分かります。この幹葉図で集団で分布の概要が分かります。なぉ、引数 scale は 1 が規定値で、ここでは省略してあります。

標準関数によるグラフ作成 (8)

標準関数：(8) 幹葉図（Stem-and-Leaf Plot）、stem()
Console にテキストベースで分布を素早く簡便に表示
「|」の左側：幹、実際の値、小数点の位置は１桁目
「|」の右側：葉、０でデータ数を表示

iris：品種 setosa のがく片の長さの幹葉図

155
（my_base_graphics3.R：411-418）

(i) データ（昇順）
(ii)

(iii)

4.4～4.5 のデータ 4 つ

幹（Stem） 葉（Leaf）

scale = 1

4.4～4.5 の
データ 4 つ

２倍

scale = 2

4.4～4.5 の
データ 4 つ

プレゼンターのノート
プレゼンテーションのノート
　418行目で、関数 stem()　により、引数 scale に 2 を渡して幹葉図 (iii) を得ます（操作）。
　ブルーの両矢印で示したように、(ii) で表示した幹葉図の縦の長さのほぼ２倍の幹葉図 (iii) です。幹の部分は、43、44、45～58 まで、1刻みです。オレンジ枠で示したように、44～45 は 4.4～4.5 の範囲になります。「|」の右側の数値が「葉」で、０が 3つ と 1 つ、計 4 つあるので、データは 4 つあることが分かります。
　この事例の場合、(iii) よりも細かい刻みで表示できないため、scale=3 にしても scale=2 と同じ出力を得ます。

標準関数によるグラフ作成 (9)

標準関数：(9) 棒グラフ（Bar Graph）、barplot()、plot()
数値ベクトルや行列などをもとに、量の大小を棒の長さで可視化
使い方

plot(x) x：因子ベクトル（因子別に集計）
barplot(y) y：数値ベクトル（各要素が 1 本の棒に対応）

マトリックス（列ごとに棒（積上げ、並列）になる）
barplot(tb) tb：テーブルオブジェクト（table() による集計）
barplot(y ~ x) y：数値ベクトル、x：因子ベクトル
barplot(y ~ x, data = df) y：データフレームの数値ベクトルと因子ベクトル
barplot(y ~ x1 + x2) y：数値ベクトル、x1, x2：因子ベクトル
barplot(cbind(y1,y2) ~ x) y1,y2：数値ベクトル、x：因子ベクトル、mx <- cbind(y1,y2)

特徴 マトリックス（行列）にまとめる
関数 barplot は、凡例を表示する引数をもっている柔軟な関数（通常、関数 legend() を使用）

156

プレゼンターのノート
プレゼンテーションのノート
　(9) 棒グラフを取り上げます。関数 barchart() で、棒グラフを作成します。plot 関数でも棒グラフを描くことができます。
　関数 plot() の場合、因子ベクトルを渡すと、自動的に集計して棒グラフを描きます。
　関数 barplot() の場合、様々なデータ構造のオブジェクトを渡して棒グラフを得ることができます。
　数値ベクトルを渡すと、ベクトルの各要素が１本の棒になります。名前付きベクトルであれば、その名前がラベルになります。
 マトリックス（行列）を渡すと、列ごとに 1 本の棒になり、それぞれの要素で積上げ棒グラフになります。あるいは、横に並べて並行棒グラフになります。　table() で作成したテーブルオブジェクトも同様の棒グラフを得ます。
　式（formula）として、３つのタイプで渡すことができます。詳細は、スクリプトを用いて説明します。
　barplot() の特徴として、plot(), boxplot(), hist() などでは、凡例を表示するために関数 legend() を呼び出す必要がありますが、barplot() では凡例を表示する引数を持っています。

標準関数によるグラフ作成 (9)

標準関数：(9) 棒グラフ（Bar Graph）、barplot()、plot()
関数 barplot() の主な引数

horiz：TRUE/FALSE（横向きの棒グラフ／縦向きの棒グラフ（既定値））
beside： TRUE/FALSE（並列棒グラフ／積み上げ棒グラフ（既定値））
width：棒の幅を表す数値ベクトル
space：棒と棒の間隔、beside=FALSEの場合、棒の間隔の数値を指定

beside=TRUEの場合、２要素の数値ベクトル、c(グループ内間隔、グルーブ間間隔)
names.arg：棒（またはグルーブ）のラベルの文字ベクトル、axisnames=FALSE で非表示
legend.text：TRUE（凡例に height のマトリックスの行名を利用）、文字ベクトル
args.legend：凡例の位置、枠線の有無を指定するリストを渡す、list(x = "topright", bty = "n")

x,y(凡例の位置)、bty(枠線の有無)、title(タイトル)、cex(文字サイズ)、horiz(横書き)
col, border：棒の塗つぶしの色、棒の枠線の色、ベクトル c("skyblue", "orange")
density：棒の塗りつぶしをハッチング（斜線模様）で描くときの線の密度、数値ベクトル
axes：TRUE/FALSE（軸の表示／非表示）、非表示にして関数 axis() で軸を追加

157

プレゼンターのノート
プレゼンテーションのノート
　引数 horiz は、横向きの棒グラフ（TRUE）か縦向きの棒グラフ（FALSE）かを指定します。規定値はFALSEの縦向きです。
　引数 beside は、積み上げ棒（FALSE）か、並列棒（TRUE）かを指定します。規定値はFALSEの積上げ棒グラフです。
　引数 width は、棒の幅を指定し、1より大きくすると太く、1未満で細くなります。
　引数 space は、棒と棒の間隔を指定します。単一の数値を渡すと、すべての棒に同じ間隔が適用されます。棒グラフを横に並べる場合（beside = TRUE の場合）には、グループ間と棒間の間隔を2要素の数値ベクトルで指定します。�　引数 names.argには、x 軸に表示する目盛ラベルを文字ベクトルで渡します。指定しない場合、データの列名や行名が自動的に使われます。
　引数 legend.text に TRUE を渡すと、データの名前から自動的に凡例を作成します。または、文字ベクトルを指定して凡例のラベルを明示的に設定することもできます。
　引数 args.legend には、凡例を細かく設定するために、様々な引数をリストとして渡します。たとえば、引数 x には凡例の位置、bty には凡例の枠線の有無を論理値で渡します。

　

標準関数によるグラフ作成 (9)

標準関数：(9) 棒グラフ（Bar Graph）、barplot()、plot()
(a) 因子ベクトル、(b)数値ベクトル、(c) 数値ベクトルと因子ベクトル

158

(a) 棒グラフ (b)(c)棒グラフ

no yes

0
1

2
3

4
5

（my_base_graphics3.R：421-440）

A1 A2 A3 A4

group

y

0
1

2
3

4
5

プレゼンターのノート
プレゼンテーションのノート
　 (a) １つの因子ベクトルを集計した棒グラフを得ます。
　424～426 行目で、"yes" と　"no" からなるデータを関数 factor()　でオブジェクト ans に付値して、因子ベクトルを作成します（操作）。
　引数 levels に "no" と "yes" からなるベクトルを渡して、両者の順序を決めます。棒が並ぶ順序に反映します。
　428 行目で、plot() により、因子ベクトル ans から棒グラフ (a) を得ます（操作）。
　(b) １つの数値ベクトルから棒グラフを得ます。
　431 行目で、関数 c() により、数値ベクトル y を作成します（操作）。
　432 行目で、関数 names() により、数値ベクトル y の各要素に名前を付けます（操作）。
　434 行目で、barplot() により、ベクトル y の値に基づいて棒グラフ (b) を得ます（操作）。
　ベクトルの各要素（1.5, 3.8, 4.1, 5.7）が棒の高さになります。各要素の名前（A1, A2, A3, A4）が、グラフの　x 軸の目盛ラベルになります。
　 (c) １つの数値ベクトルと１つの因子ベクトルから棒グラフを得ます。
　437～438 行目で、対応のある数値ベクトルと因子ベクトルを作成します（操作）。
　440 行目で、barplot() により、棒グラフ (c) を得ます（操作）。
　(b) と (c) の棒グラフは、軸ラベルがやや異なるものの、ほぼ同じです。

標準関数によるグラフ作成 (9)

標準関数：(9) 棒グラフ（Bar Graph）、barplot()、plot()
(d) 数値ベクトル～因子ベクトル＋因子ベクトル

積上げ棒グラフと並列棒グラフを作成

159

(d-1)積上げ棒グラフ (d-2) 並列棒グラフ

（my_base_graphics3.R：442-459）
B C A

yes
no

group

y

0
5

10
15

B C A

no
yes

group

y

0
10

20
30

40

回答数

因子の順序

因子の順序

beside = FALSE
省略（既定値）

プレゼンターのノート
プレゼンテーションのノート
　(d-1)(d-2) の棒グラフを得ます。「数値ベクトル～因子ベクトル＋因子ベクトル」の形式でデータを barplot() に渡して、積上げ棒グラフと並列棒グラフを得ます。
　443～448 行目で、因子ベクトル group、因子ベクトル ans、数値ベクトル y を作成し、それらを data.frame() でまとめて右上の出力を得ます（操作）。
　A, B, C の３群における"yes" と "no" の二値データです。それぞれの回答数 y が得られています。A, B, C の３群の順序を、引数 laves で B,C,A に指定します。
　(d-1) の積上げ棒グラフを得ます。�　451～453 行目で、barplot() により 積上げ棒グラフを得ます（操作）。
　引数 beside の規定値が FALSE、すなわち積上げ棒グラフなので、ここでは beside を省略してあります。x 軸のラベルが「B, C, A」になっています。これは、446 行目で引数 levels に渡した順序が反映しています。引数 legend.text に TRUE を渡して凡例を表示します。ylim の最大値を大きめに取って、凡例を表示するスペースを確保しています。
　(d-2) の並列棒グラフを得ます。
　456～459 行目で、barplot() の引数 beside に TRUE を渡して並列棒グラフを得ます（操作）。
　　

標準関数によるグラフ作成 (9)

標準関数：(9) 棒グラフ（Bar Graph）、barplot()、plot()
(e) 複数の数値ベクトル（行列）～因子ベクトル

積上げ棒グラフと並列棒グラフを作成

160

A B C

y3 y2 y1

group

0
10

20
30

40

A B C

y1 y2 y3

group

0
5

10
15

20
25(e-1)積上げ棒グラフ (e-2) 並列棒グラフ

マトリックス（行列）

（my_base_graphics3.R：461-480）

group に対応 A
 B
 C

プレゼンターのノート
プレゼンテーションのノート
　(e-1)(e-2) の棒グラフを得ます。数値ベクトルをまとめたマトリックス（行列）と１つの因子ベクトルを barplot() に渡して、積上げ棒グラフと並列棒グラフを得ます。
　462 行目で、関数 factor() により、３つのグループを表す因子ベクトル group を作成します（操作）。
　463～667 行目で、y1, y2, y3 の数値ベクトルを作成し、関数 cbind() によりまとめてマトリックス mx を作成して表示します（操作）。
　(e-1) の積上げ棒グラフを得ます。
　470～473 行目で、barplot() により、積上げ棒グラフを得ます（操作）。
　y1, y2, y3 の数値ベクトルを cbind() でまとめたマトリックス（行列）をチルダ「～」の左辺、右辺に group を配置します。
　引数 beside の規定値は、FALSE で積上げ棒グラフであるため、省略してあります。args.legend の指定で、凡例を横並びに表示します。ylim の最大値を大きめに取って、凡例を表示するスペースを確保しています。
　(e-2) の並列棒グラフを得ます。
　476～480 行目で、barplot() の引数 beside に TRUE を渡して、並列棒グラフを得ます（操作）。
　

標準関数によるグラフ作成 (9)

標準関数：(9) 棒グラフ（Bar Graph）、barplot()、plot()
(f) マトリックス（行列）

積上げ棒グラフ（実数、割合）

161
G1 G2 G3 G4

＋＋ ＋ －

0
20

40
60

80
12

0

G1 G2 G3 G4

＋＋ ＋ －

0

10

20

30

40

50
(f-1)実数 (f-2) 割合

（my_base_graphics3.R：482-511, 省略 514-523）

1：行合計に対する割合
2：列合計に対する割合
規定値：全合計に対する割合

プレゼンターのノート
プレゼンテーションのノート
　(f-1) (f-2) の棒グラフを得ます。マトリックスを barplot() に渡して、積上げ棒グラフと並列棒グラフを得ます。積上げ棒グラフでは、縦軸が実数の場合と割合の場合を示します。
　483～486 行目で、関数 matrix() により 3×4 のマトリックスを作成します（操作）。
　それぞれの列が1本の棒になります。
　487～489 行目で、作成したマトリックス mx の行名と列名を付けます（操作）。
　490 行目で、作成したマトリックス mx を表示して右上の分割表を得ます（操作）。
　(f-1) の縦軸が実数である積上げ棒グラフを得ます。
　493～500 行目で、barplot() により積上げ棒グラフを得ます（操作）。
　引数 ylim の最大値に大きめの値を渡して、凡例を表示するスペースを確保します。
　(f-2) の縦軸が割合である積上げ棒グラフを得ます。
　503 行目で、関数 prop.table() により、マトリックス mx を割合表示のマトリックスに変換して、mx_percent に付値します（操作）。
　引数 margin を指定しない場合は全合計に対する割合、margin に 1 を渡すと行合計に対する割合、2 を渡する列合計に対する割合を計算します。
　504～511 行目で、barplot() により、積上げ棒グラフ f-2) を得ます（操作）。
　なお、514～523 行目のスクリプトで (f-3) のグラフを得る操作について、説明は省略します。

標準関数によるグラフ作成 (9)

標準関数：(9) 棒グラフ（Bar Graph）、barplot()、plot()
(g) mtcars：トランスミッションと気筒数でクロス集計を作成

作成したテーブル・オブジェクトを棒グラフで可視化

162
（my_base_graphics3.R：525-543） 4気筒 6気筒 8気筒

transmission
manual
automatic

台
数

0

5

10

15

(g)積上げ棒グラフ

プレゼンターのノート
プレゼンテーションのノート
　(g) の積上げ棒グラフを得ます。データセット mtcars のトランスミッションと気筒数をクロス集計した table オブジェクトを使います。
　526 行目で、関数 table() により、データセット mtcars のトランスミッションと気筒数でクロス集計し、その結果を tb に付値してテーブルオブジェクト tb を作成します（操作）。
　527 行目で、作成したテーブル・オブジェクト tb を表示させて、右上の表を得ます（操作）。
　529～543 行目で、barplot() により、積上げ棒グラフ (g) を得ます（操作）。
　

50-54
55-59
60-64
65-69
70-74

50-54
55-59
60-64
65-69
70-74

50-54
55-59
60-64
65-69
70-74

50-54
55-59
60-64
65-69
70-74

Rural Male

Rural Female

Urban Male

Urban Female

10 30 50 70

年齢層・グループ別

死 亡 率 (‰)

標準関数によるグラフ作成 (10)

標準関数：(10) ドットプロット（Cleveland Dot Plot）、dotchart()
(a) VADeaths：マトリックスを可視化

163
（my_base_graphics3.R：546-558）

(a) Cleveland
ドットプロット

1000人当たりの
死亡率（‰）

マトリックス

グループラベル(列)

複数のカテゴリ(行)

プレゼンターのノート
プレゼンテーションのノート
　(10) ドットプロットを取り上げます。ここでのドットプロットは、「Cleveland ドットプロット」ともいわれるグラフです。
　(a) データセット VADeaths は、地域・性別と年齢層で分けて計算した死亡率のマトリックスです。これを Cleveland ドットプロットで可視化します。
　550 行目で、VADeaths の内容を表示して、左上の出力を得ます（操作）。
　データセット VADeaths は、都市部と農村部の男女を年齢層（行）ごとのグループ分け（列）して、それぞれの組合せ条件で 1,000人あたりの死亡率（パーミル）を計算したマトリックスです。
　552～558 行目で、dotchart() により、(a) のグラフを得ます（操作）。
　データとして、マトリックス「VADeaths」をそのまま渡します。引数 color はプロットする点の色でブルーを指定しています。引数 gcolor はグループラベルの色で赤を指定しています。

50-54
55-59
60-64
65-69
70-74

50-54
55-59
60-64
65-69
70-74

50-54
55-59
60-64
65-69
70-74

50-54
55-59
60-64
65-69
70-74

Rural Male

Rural Female

Urban Male

Urban Female

10 30 50 70

年齢層・グループ別

死 亡 率 (‰)

標準関数によるグラフ作成 (10)

標準関数：(10) ドットプロット（Cleveland Dot Plot）、dotchart()
(a) VADeaths：マトリックスを可視化

164
（my_base_graphics3.R：546-558）

マトリックス

1 列1 列分

(a) Cleveland
ドットプロット

複数のカテゴリ(行)

グループラベル(列)

プレゼンターのノート
プレゼンテーションのノート
　dotchart() にマトリックス「VADeaths」を渡すと、オレンジ枠とブルー枠で示した 1 列分が、ドットプロットの 1 グルーブに対応し、1 行の数値ごとに点がプロットされます。つまり、プロット全体は各行のドットプロットを並べたものになります。

標準関数：(10) ドットプロット（Cleveland Dot Plot）、dotchart()
(b) mtcars：データフレーム

気筒数でグループ分けした車種と燃費の関係

Cadillac FleetwoodLincoln ContinentalCamaro Z28Duster 360Chrysler ImperialMaserati BoraMerc 450SLCAMC JavelinDodge ChallengerFord Pantera L
Merc 450SEMerc 450SLHornet SportaboutPontiac Firebird

Merc 280CValiantMerc 280Ferrari Dino
Mazda RX4Mazda RX4 WagHornet 4 Drive

Volvo 142EToyota CoronaDatsun 710Merc 230Merc 240D
Porsche 914-2Fiat X1-9Honda CivicLotus EuropaFiat 128Toyota Corolla4気筒

6気筒

8気筒

10 20 30

燃費(MPG)

標準関数によるグラフ作成 (10)

165
（my_base_graphics3.R：560-576）

(b) Cleveland
ドットプロット

因子ベクトル
g

因子ベクトル
colors

プレゼンターのノート
プレゼンテーションのノート
　(b) データセット mtcars から燃費、気筒数、車種を取り出し、気筒数でグループ分けした車種と燃費の関係をのドットプロットで可視化します。
　561 行目で、データセット中の燃費（mpg）が昇順になるように全体の行を並び替えてから、これをデータフレーム df に付値します（操作）。
　562～563 行目で、データフレーム df から気筒数 cyl を取り出して、因子ベクトル g を作成します（操作）。
　引数 labels に c("4気筒", "6気筒", "8気筒") を渡しているので、「4,6,8」からなる数値ベクトルが ("4気筒", "6気筒", "8気筒")からなる因子ベクトルに変換します。
　564 行目で、気筒数に対応する色のベクトルを作成します（操作）。
　566 行目で、関数 data.frame() により、中央に示した表を出力して、df$mpg, g, colors の対応を確認します（操作）。
 df$mpg は数値ベクトル, g は因子ベクトル, colors は因子ベクトてす。 g は、数値ベクトル df$cyl の 1, 2, 3 を "4気筒"、"6気筒"、"8気筒" に変換した因子ベクトルてです。対応する色です。as.numeric(g) は、因子ベクトル g を、対応するインデックス（4気筒 → 1, 6気筒 → 2, 8気筒 → 3）に変換します。このインデックスから色のベクトルから各行に対応する色を抽出・選択します。たとえば、グリーン枠で示した 1行目が 8 気筒なので、インデックス 3 に対応する "green" が割り当てられます。ブルー枠で示した 13行目が 6 気筒なので、インデックス 2 に対応する "blue" が割り当てられます。
　568～576 行目で、dotchart() によりドットプロット (b) を得ます（操作）。

標準関数によるグラフ作成 (11)

標準関数：(11) 円グラフ（Pie Chart）、pie()
円全体を100%として、各項目が全体に占める割合を扇形の形（スライス）で表現したグラフ
（使用に対して否定的な意見あり、使用には注意が必要）
使い方 pie(x) x：数値ベクトル（負数がないこと）

pie()の主な引数
labels：ラベルの文字ベクトル、指定なしでベクトルの要素名を使用
edges：円グラフの輪郭を描画するのに使う区分数、既定値 200
radius：円グラフの大きさ（1 より大きいとはみ出す）、既定値 0.8
clockwise：TRUE/FALSE（時計回りの描画／反時計回りの描画（既定値））
init.angle：開始位置（0～360）、既定値は clockwise ≠ TRUE で0（3時）、TRUE で 90（12時）

多くの場合、init.angle = 90, clockwise = TRUE（12時から時計回り）が使われる
density：１インチ当たりの陰影線の密度を指定する数値、既定値NULL
angle：陰影線の傾き（角度）を指定する数値、既定値 45
col, border, lty：スライスの色、境界線の色、線種の指定、いずれも既定値はNULL

166

1

2

3

4

スライス

既定値の
開始角度
反時計回り

ラベル

位置 0
(0-360)

位置 90

プレゼンターのノート
プレゼンテーションのノート
　(11) 円グラフを取り上げます。円全体を100%として、全体に占める割合を扇形の形で表現したグラフです。この扇形の部分をスライスと言います。
　ただし、円グラフの使用に対して否定的な意見があります。構成比率の比較であれば積上げ棒グラフやドットチャートが適しています。円グラフの数値間の比較が曖昧で、スペースの割りに伝えられる情報量は多くありません。慎重に用いる必要があります。
　関数 pie() に数値ベクトルを渡すと、この数値に応じてスライスに分割されます。
　引数 labels にはスライスのラベルを表す文字ベクトルを渡します。
　引数 radius は円の大きさで、既定値は 0.8 です。1 を超えると円が欠けます。�　引数 clockwise に TRUE を渡すとスライスを時計回りに配置し、FALSE を渡すと反時計回りの配置になります。反時計回り（FALSE） が規定値です。
　円周上の位置を 0～360 の角度で表し、基点の 0 は 3 時の位置です。そこから反時計回りで表すので、12 時の位置が 90 になります。
　引数 init.angle に、スライスを配置する開始位置を渡します。規定値は、開始位置 0（3時の位置）から、反時計回りに「スライス 1」「スライス 2」の順に配置されます。時計回り（clockwise=TRUE） の場合、開始位置の規定値は 90 に切り替わり、12 時の位置がら時計回りに位置します。一般的に使われる設定は12時の位置から時計回り、すなわち、init.angle=90, clockwise=TRUE です。��
　

標準関数によるグラフ作成 (11)

標準関数：(11) 円グラフ（Pie Chart）、pie()
4水準のデータ（要素数 4 の数値ベクトル）
(a) 反時計回り、開始位置は 3時（0,既定値）
(b) 時計回り（clockwise = TRUE）、開始位置は 12時（90,既定値）
(c) (b) と同じ設定、ラベル表示

167

1

2

3

4

A1

A2

A3

A4

(a)

(b) (c)

開始位置 0
3 時の位置

開始位置 90
12時の位置

反時計回り

時計回り

ラベル

（my_base_graphics3.R：579-592）

プレゼンターのノート
プレゼンテーションのノート
　(a) 4 水準の項目の構成割合を円グラフで可視化します。�　582 行目で、要素数 4 の数値ベクトルを y1 に付値します（操作）。
　583 行目で、pie() に y1 を渡して円グラフ (a) を得ます（操作）。
　既定値で得られる円グラフは、水準 1, 2, 3, 4 が、3 時の位置（0）から反時計回りに配置されます。
　(b) (a) と同じ円グラフで、時計回りの円グラフを得ます。
　586 行目で、要素数 4 で、各要素に A1～A4 の名前を付けた数値ベクトルを y2 に付値します（操作）。
　587 行目で、pie() に y2 を渡し、引数 clockwise に TRUE を渡して円グラフ (b) を得ます（操作）。　
　各要素に名前を付けてある場合、その要素名がラベルに使われます。また、clockwise=TRUE　で時計回りを指定すると、水準 1, 2, 3, 4 が、12 時の位置 (90) から時計回りに配置されます。
　(c) の円グラフを得ます。
　590～591 行目で、 要素数 4 の数値ベクトル y3 と、スライスのラベルになる因子ベクトル lab を作成します（操作）。
　592 行目で、数値ベクトル y3 と引数 labels に因子ベクトル lab を渡して円グラフ (c) を得ます（操作）。

標準関数によるグラフ作成 (11)

標準関数：(11) 円グラフ（Pie Chart）、pie()
(d) 割合で表示する円グラフ
関数 round()：四捨五入する
関数 paste()：文字列の連結

一般的な設定（12時の位置（90）から時計回り）
init.angle = 90, clockwise = TRUE

168
（my_base_graphics3.R：594-602）

A1
 33.3 %

A2
 27.8 %

A3
 22.2 %

A4
 16.7 %

改行

(d) 円グラフ

一般的な設定

文字の連結
"¥n" ：改行

開始位置 90
12時の位置

プレゼンターのノート
プレゼンテーションのノート
　(d) 前のスライドの (c) と同じデータで、パーセント表示の円グラフを描きます。
　595～596 行目で、要素数 4 の数値ベクトル y3 と、要素数 4 の因子ベクトル lab を作成します（操作）。
　597 行目で、数値ベクトル y4 を関数 round() により各水準の割合をパーセントで計算して、四捨五入した値から数値ベクトル p を得ます（操作）。
　round() に渡す数値 y4/sum(y4) は、要素数 4 の数値ベクトルをスカラーで割っているので、結果を付値した p は、要素数 4 の数値ベクトルです。関数 round() により、四捨五入して小数点第 1 位の数値にします。
　598 行目で、割合の数値ベクトル p とラベルの文字ベクトル lab を連結してラベルにする文字列を作成します（操作）。
　関数 paste は文字を連結する関数です。文字ベクトル lab の後、改行して、数値ベクトル p を連結し、文字"%" を連結して、オブジェクト tx に付値しています。lab と p は対応のある 4 要素のベクトルなので、得られる tx も 4 要素の文字ベクトルです。文字列の中に入れた"\n"は、改行させる文字列です。「\」マークとバックスラッシュは同じ文字と考えて差し支えありません。
　599～602 行目で、関数 pie() に y4 と、tx を引数 labels に渡して、円グラフ (d) を得ます（操作）。

標準関数によるグラフ作成 (12)

分割表の可視化
モザイク図（Mosaic Plot）
２次元～多次元の分割表の可視化
すべての水準の組合せたプロット

関連プロット（Cohen-Friendlyの連関図、Association Plot）
２次元の分割表の可視化

四分表示（四分割表示、Fourfold Display for 2 by 2）
２行２列の分割表の可視化

スパインプロット（Spine Plot）
２変量データに対するモザイク図の一種

スピノグラム（Spinogram）：スパインプロットの一種、説明変数が連続変数の場合
169

プレゼンターのノート
プレゼンテーションのノート
　ここから、分割表をグラフにして可視化する関数を取り上げます。
　モザイク図、関連プロット、四分表示、スパインプロット、スピノグラムです。

x

y

F M

no
ye

s

標準関数によるグラフ作成 (12)

標準関数：(12) モザイク図（Mosaic Plot）、mosaicplot()、plot()
mosaicplot()：クロス集計表の各セルを長方形の面積で表現し、データの大きさを可視化

使い方 mosaicplot(tb) ・・・tb：table()、xtabs() で作成した分割表オブジェクト
mosaicplot(~ x + y)・・y：因子ベクトル（y 軸）、x：因子ベクトル（x 軸〉
mosaicplot(x ~ y)・・・plot()と逆の配置に注意（上の使い方を推奨）

関数mosaicplot() の主な引数
subset：データを絞り込む条件を指定
dir：各変数がプロットのどの方向を分割するか指定、"v"（垂直方向）、"h"（水平方向）

規定値（NULL）では、垂直方向の分割→垂直方向の分割、交互に分割
off：各セグメント間の隙間の割合（0～20、特に 3～8 が適切）
color：セグメントの塗りつぶしの色、共通するセグメントを塗り分け、TRUE/FALSE
border：セグメントの境界線（枠線）の色
cex.axis：軸ラベルの文字サイズ、既定値 0.66

170

セグメント

プレゼンターのノート
プレゼンテーションのノート
　(12) モザイク図を取り上げます。すでに plot() により作成方法を説明しました。ここでは、さらに msaicplot() を使います。
　関数 mosicplot()　に渡すデータは、関数 table()、xtabs() で作成した分割表オブジェクトです。
　また、集計する前の因子ベクトルを渡す方法としては、横軸に配置する x と 縦軸に配置する y について「~x+y」「x~y」 と記述する方法があります。注意点は、plot() の「y~x」ではないということです。mosicplot の内部で、table(y, x) （行が y、列が x）という形の集計表を作成することにより、左辺 (y) が横軸 にくるようです。誤り易いので、「~x+y」の方法を推奨します。
　引数 subset はデータを絞り込む条件を指定します。�　引数 dir は各変数がプロットのどの方向を分割するか指定し、"v"（垂直方向）または"h"（水平方向）を渡します。デフォルトはNULL で、垂直方向の分割から始まり、交互に分割します。�　引数 off には、各セグメント間の隙間の割合を渡します。�　引数 color はセグメントの塗りつぶしの色、共通するセグメントを塗り分けします。
　引数 border にはセグメントの境界線（枠線）の色を渡します。�　引数 cex.axis には軸ラベルの文字サイズを渡します。既定値は 0.66です。�
　�

標準関数によるグラフ作成 (12)

標準関数：(12) モザイク図（Mosaic Plot）、mosaicplot()、plot()
(a)男女別（Male/Female）の回答数（yes/no）の比較

171
sex

an
sw

er

male female

no
ye

s

（my_base_graphics3.R：605-626）

(a-1) (a-2)
モザイク図

2×2 分割表

モザイク図の
一種（後述）

水準の順序

水準の順序

2×2
分割表

プレゼンターのノート
プレゼンテーションのノート
　(a) 男女別の回答結果を想定した人工データを、モザイク図で可視化します。
　609～610 行目で、被験者として男４人、女 5人の因子ベクトルをオブジェクト sex に付値し、引数 levels に因子の水準の順序 c("male", "female") を渡します（操作）。
　611～614 行目で、各被験者の回答（yes/no）の因子ベクトルをオブジェクト answer に付値し、引数 levels に因子の水準の順序 c("no","yes") を渡します（操作）。
　615～616 行目で、関数 table() により sex と answer のクロス集計を行い、その結果を tb_out に付値して、print() で内容を表示します（操作）。
　右上に示したように、２×2分割表が得られます。sex が先で、answer が後に位置させると、sex がマリックスの行、answer がマトリックスの列になります。水準の並び方には、factor() の引数 levels で指定した順序が反映しています。
　(a-1)　関数 plot() を使ってモザイク図を得ます。
　619～620　行目で、plot() により、モザイク図ではなく、その一種であるスパインプロットを得ます（操作）。スパインプロットについては、この後で説明します。
　621 行目で、plot() によりモザイク図 (a-1)を得ます。
　(a-2) 関数 mosaicplot() を使ってモザイク図を得ます。
　624～626 行目で、mosaicplot() によりモザイク図 (a-2) を得ます（操作）。
　モザイク図 (a-1) とほぼ同じモザイク図を得ます。「sex~answer」で、sex が横軸、answer が縦軸に配置されます。「~sex+answer」の記述方法をお勧めします。

標準関数によるグラフ作成 (12)

標準関数：(12) モザイク図（Mosaic Plot）、mosaicplot()、plot()
(b) HairEyeColor：男性 279人の髪の色と目の色の関係、相互関係や独立性を検討

172
（my_base_graphics3.R：628-637） 髪の色 (Hair)

目
の

色

 (
E

y
e
)

Bl
ac

Br
o

R
ed

Bl
on

Brow n

Blue

Hazel
Green

(b)モザイク図
4×4

分割表

プレゼンターのノート
プレゼンテーションのノート
　(b) データセット HairEyeColor から男性 279 人を抽出し、髪の色と目の色の関係を可視化するために、モザイク図を作成します。
　629 行目で、データセット HairEyeColor から男性のデータを mx に付値してマトリックスを作成します（操作）。
　630 行目で、作成したマトリックス mx を表示させて、左上の 4×4 分割表を得ます（操作）。
　632～637 行目で、関数 mosaicplot() により、モザイク図 (b) を得ます。
　髪の色と目の色の相互関係や独立性を視覚的に判断します。すなわち相関的な解析です。両者の因果関係を想定しているわけではありません。

標準関数：(13) スパインプロット、(14)スピノグラム
モザイク図
データを再帰的に分割したタイル状のグラフ（3 変数以上も可）
変数間の相互関係や独立性、全体的な分布構造を可視化

スパインスプロット
幅を変えた 100%積み上げ棒グラフ（2 変数）
x のグループによって y の割合がどう変わるか、因果関係を可視化

sex

an
sw

er

male female

ye
s

no

0.
0

0.
2

0.
4

0.
6

0.
8

1.

tb_out

sex

an
sw

er

male female

no
ye

s

標準関数によるグラフ作成 (13)(14)

173

モザイク図

スパインプロット

0~1

タイル状

モザイク図 (mosaic plot) スパインプロット (spine plot)
外観 データを再帰的に分割したタイル状 幅を変えた 100% 積み上げ棒グラフ

変数の数 3変数以上も表現可能 基本的に 2変数（y ~ x）

主な用途 変数間の相互関係や独立性を
見たいとき（相関的）

説明変数が応答変数に与える影響を
見たいとき（回帰的）

縦軸 カテゴリの分割、目盛りは必須ではない 条件付き確率 (0 ～ 1)
連続変数 事前にカテゴリ化が必要 対応可 (→ スピノグラム)

幅は male,
female の

サイズを反映

棒状

幅は male,
female の

サイズを反映

プレゼンターのノート
プレゼンテーションのノート
　(13)　スパインプロットと (14) スピノグラムを取り上げます。両者を解説している書籍やサイトが少ないので、これらのグラフについて少し解説します。
　スパインプロットとスピノグラムは、モザイク図の一種です。
　右上のモザイク図と右下のスパインプロットは、どちらもカテゴリデータの割合を面積で表すグラフですが、「焦点」と「見た目（軸の扱い）」に明確な違いがあります。
　モザイク図は「データを再帰的に分割したタイル状の図」です。すなちわ、新しい分割はその親ブロックの中で実行されます。そのため、３変数以上のモザイク図が作成できます。変数間の相互関係や独立性など、全体的な分布構造を可視化します。
　スパインプロットの外観は、縦軸の範囲が 100% の積み上げ棒グラフで、基本的に 2 変数の関係を示します。縦軸の目盛は 0～1 です。横軸 x のグループによって縦軸 y の割合がどう変わるか、因果関係を可視化します。
　両者とも、棒の横幅はサンプルサイズを反映しています。
　仮に連続変数を組み込もうとする場合、モザイク図では事前に数値変数をカテゴリー化して因子変数に変換して用います。一方、スパインプロットでは、連続した数値変数を直接用いることもできます。これがスビノグラフです。

標準関数によるグラフ作成 (13)(14)

標準関数：(13) スパインプロット、(14)スピノグラム
スパインプロット
幅を変えた 100%積み上げ棒グラフ
x のグループによって y の割合がどう変わるか、因果関係を可視化

スピノグラム
スパインプロットで、x 軸に連続的な数値変数をビニングして割付け

174

スピノグラム（sinogram） スパインプロット (spine plot)

目的
連続的な説明変数 (x) が
応答変数 (y) の割合に与える影響を
視覚的に把握

離散的な説明変数 (X) が
応答変数 (Y) の割合に与える影響を
視覚的に把握

横軸 (x) 連続的な数値変数を、
区間に区切って割当（ビニング） 離散的な因子変数を割当

縦軸 (y) 条件付き確率 (0 ～ 1) 条件付き確率 (0 ～ 1)

幅 各区間（ビン）に属するデータの度数に
比例する幅を持つ

各カテゴリに属するデータの度数に
比例する幅を持つ

区分け
がく片の長さの区間

品
種

の
割

合
（
条

)

4 5 5.5 6 6.5 8

vi
rg

in
ic

a
se

to
sa

0.
0

0.
4

0.
8

sex

an
sw

er

male female

ye
s

no

0.
0

0.
2

0.
4

0.
6

0.
8

1.

0~1

幅は male,
female の

サイズを反映

スピノグラム

スパインプロットビニングした
数値変数

プレゼンターのノート
プレゼンテーションのノート
　スピノグラムは、スパインプロットの特別なケースで、同じ関数 spinoplot() で得られます。スピノグラムは、スパインプロットの横軸が、離散的なカテゴリ変数ではなく、ビニングした連続変数です。ビニングはヒストグラムでも説明しました。ビニングは連続した数値変数を区間に分けすることで、その区間をビンといいます。
　別の見方をすると、スピノグラムは、ヒストグラム（連続変数を区切る）と積み上げ棒グラフ（割合を縦軸で示す）を組み合わせたものです。連続的な数値変数の範囲を、複数の区間（ビン）に分けます。各区間の横幅を、その区間に含まれるデータの件数（度数）に比例させます。各区間（棒）の中で、応答変数 Y の各カテゴリの条件付き割合に応じて縦に分割し、これを積み上げます。

標準関数によるグラフ作成 (13)

標準関数：(13) スパインプロット（Spine Plot）、spineplot()、plot()
(a)試験区（対照(ctrl)/処理(trt)）の反応（yes/no）の比較

（因果関係の解析）

175
目盛group

an
sw

er

ctrl trt

ye
s

no

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0(a-1)(a-2)スパインプロット

幅は ctrl, trtの
サイズを反映

条件付き
確率

（my_base_graphics3.R：640-660）

テーブル
オブジェクト

プレゼンターのノート
プレゼンテーションのノート
　(13) スパインプロットを得ます。
　(a) 人工データとして、対照と処理の２群で反応を観測した数値を使います。２群が原因、反応が結果、すなわち因果関係の解析です。
　644～645 行目で、関数 factor() により、対照（ctrl）と処理（trtf）の２群を設定し、これをオブジェクト group に付値して因子ベクトルを作成します（操作）。
　引数 levels に因子の水準の順序として c("ctrl", "trt") を渡します。
　646～649 行目で、関数 factor() により、処理後の反応（yes/no）をオブジェクト answer に付値して因子ベクトルを作成します（操作）。
　引数 levels に因子の水準の順序として　c("no","yes") を渡します。
　651 行目で、関数 table() により、因子ベクトル group と answer のクロス集計を行い、その結果をオブジェクト tb_out に付値します（操作）。
　tb_out はテーブルオブジェクトです。
　652 行目で、関数 print() により、tb_out の分割表を確認します（操作）。
　655 と 656 行目で、plot() により、スパインプロット (a-1) を得ます（操作）。
　659 と 660 行目で、spineplot() により、スパインプロット (a-2) を得ます（操作）。
　(a-1)(a-2) はほぼ同じグラフです。group が横軸、answer が縦軸に配置されることに留意します。

標準関数によるグラフ作成 (14)

標準関数：(14)スピノグラム（Spirogram）、spineplot()
(a) iris：がく片の長さ（Sepal.Length, 連続変数） から

品種（Species, カテゴリ変数）をどの程度の
確率で推定できるか

がく片の長さを自動的にビニングしてプロット

176
がく片の長さ (cm)

品
種

4 5 5.5 6 6.5 7

vi
rg

in
ic

a
ve

rs
ic

ol
or

se
to

sa

0.
0

0.
2

0.
4

0.
6

0.
8

1.

（my_base_graphics3.R：663-670）

条件付き確率

ビニングした
がく片の長さ

(a)スピノグラム

因子ベクトル
～数値ベクトル

プレゼンターのノート
プレゼンテーションのノート
　(14) スピノグラムを得ます。
　(a) データセット iris の情報を基にして、品種が分からないアヤメの個体を得たときに、その個体のがく片の長さから３品種のいずれかを推定します。このとき、どの程度の確率で推定できるか可視化します。
　666～670 行目で、関数 spineplot() により、 スピノグラム (a) を得ます（操作）。
　「因子ベクトル(Species)～数値ベクトル(Sepal.Length) 」という形式で spineplot() に渡します。順番に注意が必要です。x 軸には、ビニングしたがく片の長さが自動的に割り当てられます。

標準関数によるグラフ作成 (15)

標準関数：(15) Cohen-Friendly の連関図（Association Plot）、assocplot()
２次元の分割表の可視化（２次元以上のデータはmargin.table()などを使って２次元に集約）
分割表における観測度数と期待度数の乖離を視覚化、アソシエーション分析

使い方 assocplot(x) ・・・x：マトリックス、テーブルオブジェクト

assocplot()の主な引数
space：長方形の間の距離、既定値 0.3

（長方形の平均幅と高さの割合）

棒の高さ：ピアソン残差（Pearson residuals）
基準線より上に位置するほど観測度数が期待度数より多いことを示す（正の連関）
基準線に近いほど観測度数と期待度数が近いことを示す（独立性が高い）
基準線より下に位置するほど観測度数が期待度数より少ないことを示す（負の連関）

棒の幅 ：期待度数の平方根に比例、幅が広い棒ほとその組み合わせの期待度数が大きい
棒の面積：観測度数と期待度数の単純な差（乖離の実数）

177

Black Brow n Red Blond

G
re

en
Bl

ue
Br

ow
n

基準線

表頭のカテゴリ

表側のカテゴリ

プレゼンターのノート
プレゼンテーションのノート
　(15) Cohen-Friendly の連関図を取り上げます。関数 assocplot() により、右側に示したような長方形を描くことにより、２次元の分割表を可視化して観測度数と期待度数の乖離を視覚化します。これをアソシエーション分析といいます、２次元以上のデータは margin.table などを使って２次元に集約する必要があります。
　関数 assocplot() には２次元の分割表として、マトリックス（行列）、またはテーブルオブジェクトを渡します。分割表の表頭と表側が、それぞれグラフの縦軸と横軸になります。
　引数 spece は、 長方形の間のスペースで、長方形の平均の幅と高さの割合を渡します。既定値は 0.3 です。
　この長方形の棒の高さはピアソン残差を表しており、基準線より上に位置するほど観測度数が期待度数よりも多く、正の関連が高いことを示します。基準線に近いほど観測度数と期待度数が近く、独立性が高くなります。基準線より下に位置するほど、観測度数が期待度数より少ないことを示します。
　棒の幅は、期待度数の平方根に比例しています。�　したがって、棒の面積は「観測度数と期待度数の単純な差（乖離の実数）を表しています。面積が大きい場合、その組み合わせに強い連関があることを示唆します。面積が小さい場合、期待通りであり、連関が弱いことを示唆します。

Black Brown Red Blond

G
re

en
H

az
el

B
lu

e
B

ro
w

n

髪の色

目
の

色

標準関数によるグラフ作成 (15)

標準関数：(15) Cohen-Friendly の連関図（Association Plot）、assocplot()
(a) HairEyeColor：女性 313人の髪の色と目の色の関係、

相互関係や独立性を可視化

178

黒髪の人は
茶色の目を持つ

傾向が強い

（my_base_graphics3.R：673-683）

関連性が
小さい

(a) Cohen-Friendly の連関図

文字を調整する
引数はない
その代わりに
par() を使う

プレゼンターのノート
プレゼンテーションのノート
　(a) データセット HairEyeColor から、女性 313 人のデータを抽出し、髪の色と目の色について、相互関係や独立性を連関図で可視化します。�　677 行目で、データセットから女性のデータを抽出し、mx15 に付値してマトリックス（行列）を作成します（操作）。�　678 行目で、マトリックスの中身を確認します（操作）。
　髪の色、目の色、性別の3次元配列データから、女性のデータを取り出して、2次元の分割表を得ます。
　680 行目は、参考として記述してあります。assocplot() には、軸ラベル、目盛ラベルなどの文字をカスタマイズする引数がないので、仮にこれらを調整したい場合、関数 par() を使います。
　681～683 行目で、assocplot() により連関図を作成します（操作）。
　黒髪×茶色の目の組合せで、最も強い正の連関が見られます。黒髪の人は茶色の目を持つ傾向が強いことを示しています。

標準関数：(16) ４分表示（Fourfold Display）、fourfoldplot()
2×2の分割表（クロス集計表）を４分円の面積で視覚的に比較、オッズ比の視覚化
使い方 fourfoldplot(x)・・・x：2×2×k の配列(k個の 2×2 分割表）、 tableオブジェクト（2×2）
関数 fourfoldplot()の主な引数

color：長さ 2 のベクトル、各 2 x 2 分割表の小さい方の対角線と大きい方の対角線に使用する色
conf.level：オッズ比の信頼区間に使用する信頼水準、既定値 0.95、０で区間推定なし
std：標準化の方法を指定、"margins"（既定値）、"ind.max"、"all.max"
margin：等しくする余白を表す数値ベクトル、1, 2, c(1, 2)
space：４分円の空白、既定値 0.2（0 に近いほど４分円が接近）
mfrow, mfcolb：k 個のプロットを行優先で配置、列優先で配置

期待値からの偏りを４分円の形から視覚的に表示（k 個の４分円を得る）
４分円が完全な円に近い：２変数はほぼ独立（関連性がほぼない）、オッズ比は１に近い
４分円が非対称：２変数は独立ではない（関連性が強い）、オッズ比は１から離れる

group: male

ou
tc

om
e:

 y
es

group: female

ou
tc

om
e:

 n
o

66

56

77

114

標準関数によるグラフ作成 (16)

179

４分円

仮称

プレゼンターのノート
プレゼンテーションのノート
　(16) ４分表示を取り上げます。Fourfold Display に対する標準的な日本語はないようです。したがって、「４分表示」の名称の使用にあたっては、注意が必要です。なお、2×2の分割表のことを 「4 分表（fourfold table）」といいます。そこで、ここでは「4 分表示」としています。フォーフォールド表示という表示が適しているかもしれません。
　fourfoldplot() は、2×2の分割表（クロス集計表）から右側に示した４分円を作成して、分割表を視覚的に分析する関数です。標準パッケージ stats に属します。
　fourfoldplot() に渡すデータは、2×2×k の配列です。すならち、k 個の 2×2 分割表です。あるいは 2×2分割表に集計したtableオブジェクトを渡します。
　主要な引数は、ここに示したとおりです。
　この関数によって、k 個の 2×2分割表から、k 個の４分円を得ます。k 個の組合せの中から、関連性の強い組合せ、関連性の弱く独立している組合せを視覚的に判別することができます。４分円が完全な円に近いほど２変数はほぼ独立であり、関連性がほぼないと判断されます。オッズ比は１に近くなります。一方、円から離れて非対称になった場合、２変数は独立ではなく、関連性が強いと判断されます。オッズ比は１から離れます。つまり、オッズ比の視覚化です。

標準関数によるグラフ作成 (16)

標準関数：(16) ４分表示（Fourfold Display）、fourfoldplot()
 (a) ２×２分割表を３つ比較

180
（my_base_graphics3.R：686-707）

(a) ４分割プロット

group: 旧処方

an
sw

er
:

有
効

group: 新処方

an
sw

er
:

無
効

table: 例-1

1

8

14

2

group: 旧処方

an
sw

er
:

有
効

group: 新処方

an
sw

er
:

table: 例-2

4

7

11

3

group: 旧処方

an
sw

er
:

有
効

group: 新処方

an
sw

er
:

table: 例-3

18

11

12

9

オッズ比 6.41
p = 0.0305

オッズ比 1.40
 p = 0.6253

オッズ比の
信頼区間

オッズ比 56.0
p < 0.0001

プレゼンターのノート
プレゼンテーションのノート
　(a)３組の 4 分表示を得ます。３つの 2×2 の分割表を 2×2×3 の配列にまとめます。これを fourfoldplot() を使って 4分表示を３つ作成します。
　690～695 行目で、３つの 2×2 分割表として、mx1、mx2、mx3 のマトリックスを作成します（操作）。
　ncol = 2 は「2 列の行列にする」という意味です。byrow = TRUE により、上から行単位で値を埋めています。どちらも 2行2列の分割表です。
　696～703 行目で、３つのマトリックスから 3 次元配列 arr を作成します（操作）。
　dim = c(2,2,3)　は、2行、2列、3個という意味です。dimnamesで、 行名（男性・女性）、列名（yes・no）、分割表の名前（例-1、例-2、例-3）を設定します。
　705～707 行目で、forufoldplot() により 4 分表示を得ます（操作）。
　左上の例-1 の場合、オッズ比は 56.0 で、有意差検定の結果 1 と高度に有意です。4 分表示は円からかなり離れた形です。右上の例-2 の場合、オッズ比は 6.41 で 1 との差は有意です。4 分表示は円から離れた形てす。右下の例-3 の場合、オッズ比は 1.40 で 1 との差は有意ではありません。4 分表示はほぼ円形です。
　なお、fourfoldplot() でオッズ比とその検定結果を表示することはできないので、別の関数で計算します。

標準関数によるグラフ作成 (17)

標準関数：(17)１標本 Q-Q プロット（Q-Q Plot）、qqnorm()、qqline()
１標本のサンプルデータ y が理論的な分布（正規分布）にどの程度従っているかを可視化
 通常、正規分布と比較することから、正規 Q-Q プロット（Normal Q-Q plot）ともいわれる

Q：Quantile（分位数、分位点）、全体をある比率で分割する区切りの値、例えば 0.25分位点
使い方 qqnorm(y)・・・y：数値ベクトル（無作為抽出された観測値）

qqline(y) ・・・参照線を引く低水準グラフィックス関数

関数 qqnorm()の主な引数
plot.it：TRUE/FALSE（グラフを表示／非表示）、分位点を取り出すとき qq_data <- qqplot(),
datax：TRUE/FALSE（x軸がサンプルデータ／x軸が理論値（既定値、標準的））

関数 qqline()の主な引数
distribution：論理分布の分位点関数、既定値 qnorm（正規分布）
probs：長さ２の数値ベクトル、対応する分位点を通る参照線を描画、規定値は c(0.25, 0.75)
qtype：分位点を計算する種類（1～9、規定値 7） 関数 quantile()を参照

181

第１四分位点
第３四分位点

0.25:0.75 に分割する値
パーセント点 percentile と
ほぼ同じ意味 下側 25% 点

プレゼンターのノート
プレゼンテーションのノート
　(17)１標本 Q-Q プロットを取り上げます。関数 qqnorm() は、１つの標本から無作為に得られた観測値が、理論的な正規分布にどの程度近いのかを視覚化します。通常、正規分布と比較することから、正規 Q-Q プロット（Normal Q-Q plot）といわれます。
　Q は Quantile の頭文字で、分位数または分位点です。全体をある比率で分割する区切りの値で、0.25 分位点は 0.25:0.75 に分割する値です。percentile（パーセント点）とほぼ同じ意味で、0.25 分位点は 下側 25% パーセント点です。
　関数 qqline() を使うと、参照線を追加して正規性を判定しやすくなります。
　関数 qqnorm() の引数で、plot.it = FALSE を指定すると、グラフを描かずに分位点データだけを取り出せます。qqplot の結果をオブジェクトに付値します。
　引数 datax= FALSE の場合、 x 軸に理論値が割り当てられます。これが既定値です。TRUE の場合、x 軸がサンプルデータになります。
　関数 qqline() の引数 probs に要素数２の数値ベクトルを渡して、この２つの値に対応する分位点を通る参照線を描画します。規定値は　c(0.25, 0.75) です。すなわち、第1四分位数と第3四分位数です。
　引数　qtype には、分位点を計算する種類 1～9 を渡します。規定値 は 7 です。詳細はヘルプを参照してください。

標準関数によるグラフ作成 (17)

標準関数：(17)１標本 Q-Q プロット（Q-Q Plot）、qqnorm()、qqline()
(a) t 分布（自由度 5）に従う乱数と正規分布の比較

Q-Qプロットは、x軸に正規分布の分位点、
y軸にサンプルの分位点を取ったグラフ

182

-3 -2 -1 0 1 2 3

-6
-4

-2
0

2
4

Theoretical Quantiles

S
am

pl
e

Q
ua

nt
ile

（my_base_graphics3.R：710-718）

y 軸：サンプルの分位点

(a) １標本 Q-Q プロット

参照線

x 軸：正規分布の分位点

プレゼンターのノート
プレゼンテーションのノート
　(a) t 分布に従う乱数がどれだけ正規分布に近いか、１標本 Q-Q プロットで確かめます。
　714 行目で、関数 rt() により自由度 5 の t 分布に従う乱数 200 個を発生させ、オブジェクト y1 に付値して数値ベクトルを作成します（操作）。
　716 行目で、y1 を qqnorm() に渡して、Q-Q プロットを得ます（操作）。
　717 行目で、y1 を qqline() に渡して参照線を追加します（操作）。
　通常、y 軸にサンプルの分位点、x 軸に理論的な正規分布の分位点を取ります。
　

標準関数によるグラフ作成 (17)

標準関数：(17) １標本 Q-Q プロット（Quantile-Quantile Plot）、qqnorm()
(b) iris：アヤメの品種 "setosa"のがく片の長さの分布と正規分布の比較

183
（my_base_graphics3.R：720-735）

-2 -1 0 1 2

4.
5

5.
0

5.
5

理論的な正規分布の分

サ
ン

プ
ル

の
分

位
点

(b) １標本 Q-Q プロット

参照線

既定値
第１四分位点
第３四分位点

プレゼンターのノート
プレゼンテーションのノート
　　(b) データセット iris で、アイリスの品種 setosa について、がく片の長さの分布が正規分布に見なせるか、Q-Q プロットで正規分布と比較します。
　722～723　行目で、品種 setosa のがく片の長さを iris から抽出して y1 に付値します（操作）。
　725～730 行目で、qqnrom() により、y1 から Q-Q プロットを得ます（操作）。
　引数 pch=1で、プロットする記号を白抜きの丸印に指定します。
　引数 datax に FALSE を渡して、サンプルを y 軸に割当てます。これは規定値なので、あえて記述する必要はありません。
　732～735 行目で、関数 qqline() により、y1 を基にして参照線を追加します（操作）。
　引数 prob と引数 distribution の設定は規定値なので、記述する必要はありませんが参考までに記述してあります。
　

標準関数によるグラフ作成 (18)

標準関数：(18) ２標本 Q-Q プロット（Quantile-Quantile Plot）、qqplot()
２つの標本分布の形状が似ているかどうかを視覚的に比較
使い方 qqplot(x, y)・・・x、y：数値ベクトル（比較する２群から無作為に抽出した観測値）

このグラフで「2つの分布が（ほぼ）同じ形である」ことを示す参照線は傾き 1 の直線
（正規分布の理論値ではない）

関数 qqplot()の主な引数
polt.it：TRUE/FALSE（グラフを表示／非表示）、分位点を取り出すとき qq_data <- qqplot()
conf.level：信頼区間の信頼度、たとえば 0.95、規定値は NULL で信頼区間は非表示
conf.args：信頼区間の計算と視覚化を定義する引数のリスト

exact：NULL(既定値)ではサンプルサイズの積が 10000 未満で正確な計算を実施
simulate.p.value：モンテカルロ法で p値を計算するか否か（既定値 FALSE）
B：モンテカルロ検定で使用する反復回数（既定値 2000）
col、border：信頼区間の塗りつぶしの色と境界線の色（既定値NA, NULL）

184

プレゼンターのノート
プレゼンテーションのノート
　(18) ２標本 Q-Q プロットを取り上げます。関数 qqplot() は、２群の分布の形状が似ているかどうかを視覚的に比較するために、２ 群から無作為に抽出した数値ベクトル x, y を qqplot に渡します。２標本 Q-Q プロットと呼ばれます。このグラフに書き入れる参照線は、傾き 1 の直線です。
　引数 plot.it = FALSE を指定すると、グラフを描かずに分位点データだけを取り出せます。qqplot の結果をオブジェクトに付値します。
　引数 conf.level には信頼区間の信頼度、たとえば 0.95 などを渡します。既定値の NULL では、信頼区間は計算されません。
　引数 conf.args は、信頼区間の計算を制御する引数のリストを渡します。引数 exact はNULLまたは正確な p 値を計算するかどうかを示す論理値を渡します。引数 simulate.p.value はモンテカルロ法によって p 値を計算するかどうかを示す論理値で既定値は FALSE です。引数 B はモンテカルロ法で使用する反復回数を定義します。既定値は 2000 です。col と border は信頼区間の塗りつぶしと境界線の色を渡します。既定値の NA と NULLでは、信頼区間は塗りつぶされず、黒い境界線が表示されます。

標準関数によるグラフ作成 (18)

標準関数：(18) ２標本 Q-Q プロット（Quantile-Quantile Plot）、qqplot()
(a) ２つの標準正規乱数をそれぞれ 100個発生させて分布を比較

参照線：y=x の直線

185
（my_base_graphics3.R：738-747）

(a) ２標本 Q-Q プロット

-2 -1 0 1 2

-2
-1

0
1

2

y1

y2

参照線
切片 0、

傾き 1 の直線

プレゼンターのノート
プレゼンテーションのノート
　(a) ２つの標準正規乱数をそれぞれ 100個発生させて、これらの分布を２標本 Q-Q プロットで比較します。最もシンプルな qqplot()　の使い方です。
　742～743 行目で、標準正規乱数の数値ベクトルを y1 と y2 に付値します（操作）。
　745 行目で、qqplot() に２つの数値ベクトルを渡して、Q-Q プロット (a) を得ます（操作）。
　746～347 行目で、切片 0、傾き 1 の参照線を加えます（操作）。

標準関数によるグラフ作成 (18)

標準関数：(18) ２標本 Q-Q プロット（Quantile-Quantile Plot）、qqplot()
(b) iris：２品種のがく片の長さの分布を Q-Q プロットで比較、参照線：中央値を通る傾き 1 の線

186
（my_base_graphics3.R：749-770）

4.5 5.5 6.5 7.5

4.
5

5.
5

6.
5

7.
5

Setosa のがく片の長さ

vi
rg

in
ic

a

の
が

く
片

の
長

さ

参照線
スケールが等しいので
中央値を通る
傾き 1 の直線

(b) ２標本 Q-Q プロット

参照線
中央値を通る
傾き 1 の直線

プレゼンターのノート
プレゼンテーションのノート
　(b) データセット iris で、アイリスの２品種 setosa と virginica　について、がく片の長さの分布を Q-Qプロットで比較します。
　751～752　行目で、それぞれの品種のがく片の長さを iris から抽出して y1 と y2 に付値します（操作）。
　753～754 行目で、２品種を合わせて、がく片の長さの最大値と最小値を求めます（操作）。
　756～766 行目で、qqplot() に y1 と y2 を渡して Q-Q プロットを得ます（操作）。
　引数 cof.level に 0.95 を渡します。これにより、信頼率 95% 信頼区間がグラフに追加されます。
　引数 conf.args で、信頼区間のカスタマイズを行います。詳しくは、前のスライドで示してあります。
　768～770 行目で、関数 abline() を使い、２品種の中央値を通る傾き 1 の直線を参照線として追加します（操作）。
　比較する両者のスケールが等しいので、中央値を通る傾き 1 の直線を参照線とします。

標準関数によるグラフ作成 (18)

標準関数：(18) ２標本 Q-Q プロット（Quantile-Quantile Plot）、qqplot()
(c) 正規乱数と標準正規乱数の分布を Q-Qプロットで比較
正規乱数：平均 2、標準偏差 3 の正規分布に従う乱数
標準正規乱数：平均 0、標準偏差 1 の正規分布に従う乱数
参照線：第 1 四分位数と第 3 四分位数を通る直線

（一般的な参照線）

187
（my_base_graphics3.R：772-784）

-2 -1 0 1 2

-5
0

5
10

y1

y2 参照線
第 1 四分位数と
第 3 四分位数を
通る直線

(c) ２標本 Q-Q プロット

diff(q2)

diff(q1)

この比が傾き

プレゼンターのノート
プレゼンテーションのノート
　(c) 実務での多くの場面では、 Q-Q プロット を用いる場合、参照線は単なる「傾き 1 の線」ではなく、0.25 と 0.75 の分位点、すなわち第1四分位点と第3四分位点を通る直線を用います。そこで、正規分布に従う乱数と標準正規分布に従う乱数を Q-Q プロットで比較します。両者のスケールが異なるので、単なる傾き 1 の参照線は使えません。
　773 行目で、標準正規乱数を100個、y1 に付値します（操作）。
　774 行目で、平均 2、標準偏差 3 の正規乱数を 100 個、y2 に付値します（操作）。
　776 行目で、qqplot() に y1 と y2 を渡して Q-Q プロット　(c) を得ます（操作）。
　778～784 行目で、関数 quantile() により、y1 と y2 の第 1 四分位数と第 3 四分位数をそれぞれ求めて、q1、q2 に付値します（操作）。
　q1, q2 は、それぞれ２要素の数値ベクトルです。
　780～781 行目で、y1 と y2 の第１四分位数と第３四分位数を通る直線の切片と傾きを求めます。
　関数 diff() は連続する要素間の差を返します。中央に示した図のように、diff(q1) は、y1 の第１四分位数と第3四分位数の差を返します。diff(q2) は y1 の第１四分位数と第3四分位数の差を返します。この比が傾きになります。
　782～784 行目で、関数 abline() により、求めた切片と傾きの参照線を追加します（操作）。

標準関数によるグラフ作成 (19)

標準関数：(19) 等高線プロット（Contour Plot）、contour()
３次元データ（x, y, z）を２次元（x, y）の平面に投影し、同じ z の値を線で結んで可視化
関数の変化や地形、気象データなどを視覚化、空間データの変化を直感的に把握
z = f(x, y) の格子状データ（地形や密度など）を直感的に把握

使い方 contour(x, y, z) ･･･ x軸とy軸の座標（数値ベクトル、昇順）、
z はマトリックス（行列）、x, y を省略して z を x として渡すことも可

関数 contour() の主な引数
levels：等高線を描くzの値（既定値は最小値から最大値まで nleveslsの数だけ均等に分割）、

 c(0.01, 0.1, 0.5, 1) と指定することで、特定の zの値の等高線を描画
nlevels：levels が指定されていない場合、描く等高線の数、既定値は 10
col：等高線の色、例えば topo.colors(10)を渡すと 10段階のグラデーションの指定が可能
asp：x軸と y 軸の比を指定、asp = 1 で x 軸と y 軸のスケールを同じにする

（asp 引数を省略すると、自動的にプロット領域に合わせて軸の長さを調整）
188

プレゼンターのノート
プレゼンテーションのノート
　(19) として等高線プロットを取り上げます。関数 contour() は、等高線プロットを描画する標準関数です。等高線プロットは、3次元のデータ（x, y, z）を2次元の平面に投影し、z の値が同じ点を線で結んだ図、すなわち等高線を描きます。これにより、z の変化を視覚的に把握することができます。
　使い方は、3次元のデータ x, y, z を contour() に渡します。x と y は平面の座標を表す数値ベクトルで、昇順でなくてはなりません。z はマトリックスです。
　x, y を省略して、z を x として渡すこともできます。この場合、マトリックスの行番号と列番番号が自動的に x, y に使用されます。x の個数は z の行数に一致します。y の個数は z の列数に一致します。
　引数 levels は、等高線を描く z の値です。既定値は、最小値から最大値まで均等に分割します。仮に、levels = c(0.01, 0.1, 0.5, 1) とすると、この特定の z の値で線を引きます。
　引数 col は、等高線の色を指定します。単色でもいいですが、例えば topo.colors(10) を渡して10段階のグラデーションの指定が可能です。
　引数 asp = 1 を設定することで、x軸とy軸のスケールを同じにすることができます。asp 引数を省略すると、Rは自動的にプロット領域に合わせて軸の長さを調整します。この場合、x軸とy軸のスケールは異なる場合があります。�

標準関数によるグラフ作成 (19)

標準関数：(19)等高線プロット（Contour Plot）
(a) volcano：火山の標高データを等高線で可視化

マトリックスの各要素は標高値
行と列は東西南北の座標（10 m 間隔）
行と列のインデックスを 10倍して10 m 間隔に変換

189
（my_base_graphics3.R：786-799）

 100

 10
0

 110

 110 110

 120

 130

 140

 150

 160

 170 18
0

0 200 400 600 800

0

200

400

600

引数 las =1で
水平に表示

列インデックス

行インデックス

要素

(a) 等高線プロット

x, y を省略
x に volcano を

渡す

プレゼンターのノート
プレゼンテーションのノート
　(a) データセット volcano の火山の標高データから等高線プロットを得ます。
　789 行目で、データセット volcano の一部を表示して右上の表を得ます（操作）。
　volcano はマトリックスです。各要素は標高値を表しています。列と行の番号、すなわちインデックスは、東西・南北方向の座標を表します。10 m 間隔になっています。したがって、インデックスに 10 を掛けることで、実際の間隔に戻ります。
　791 行目で、オブジェクト z にマトリックスの要素を付値します（操作）。
　792～793 行目で、オブジェクト x と y に、マトリックスの行と列のインデックスを 10 倍して付値します（操作）。
　795～797 行目で、関数 contour() にオブジェクト x,y,z を渡して (a) の等高線プロットを得ます（操作）。
　引数 asp に 1 を渡して、等高線プロットの縦と横の比を等しくします。
　引数 las に 1 を渡して目盛ラベルを水平に表示させます。
　なお、799 行目のように、データセット volcano をそのまま contour() に渡すだけで等高線が得られます（操作）。
　x, y を省略して、z である volcano を x に渡します。そうすると、マトリックスのインデックスが x と y に自動的に割り当てられます。
　

標準関数によるグラフ作成 (19)

標準関数：(19)等高線プロット（Contour Plot）、contour()
(b) ２次元正規分布（𝜇𝜇𝑥𝑥 = 0, 𝜇𝜇𝑦𝑦= 0, 𝜌𝜌 = 0.5）の等高線

190

2次元正規分布の
 (rho = 0.5

 0.02

 0.04

 0.06

 0.08

 0.1

 0.
12

 0
.14

-3 -2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

（my_base_graphics3.R：801-821）

(b) 等高線プロット

既定値
rho = 0.5

2 つの数値ベクトルから
指定した 関数により計算

改行

プレゼンターのノート
プレゼンテーションのノート
　(b) ２次元正規分布の等高線を描きます。２次元正規分布の母平均を 0、母相関係数を 0.5 とします。
　802～804 行目で母相関係数 r を 0.5 に設定し、x および y の値 xx, yy を －3～3 の間で 50 個設定します（操作）。
　807～812 行目で、関数 function() により２次元正規分布の確率密度関数(pdf)　を定義します（操作）。
　ユーザー定義関数の引数で、「rho=0.5」とすることにより、f_pdf が呼び出されたときに 引数 rho に値が渡されなかった場合、規定値として 0.5 が自動的に使われるようにしています。ここでは、省略できます。
　815～816 行目で、関数 outer() に、定義したユーザー定義関数と xx, yy を渡すして、z の値 zz を計算します（操作）。
　関数 outer() は、2 つのベクトルを使って、指定した 関数で計算し、その結果をマトリックスとして返します。したがって、50×50=2500 個から成る zz を得ます。
　818～821 行目で、関数 contour() に x,y,z　の引数に xx, yy, zz を渡して (b) の等高線プロットを得ます（操作）。

標準関数によるグラフ作成 (20)

標準関数：(20) ３次元透視図（3D Perspective Diagram）、persp()
３次元データ（x, y, z）を立体的に可視化、3D 曲面プロットとほぼ同じ

z = f(x, y) の格子状データ（地形や密度など）を直感的に把握（3D perspective view）

使い方 pesp(x, y, z)･･･ x 軸とy 軸の座標（数値ベクトル、昇順）、z はマトリックス（行列）

関数 persp() の主な引数
theta：視点の方位角（横方向の回転角度、単位は度）、規定値は 0
phi：視点の仰角（縦方向の角度、単位は度）、規定値 15
expand：z 軸方向の拡大・縮小率を指定。1 より小さい値で高さを抑えられる
col：面の色を指定。1 色または z の値に応じてベクトルで与えることも可
border：面の境界線の色を指定（NA で線を描かない）
ticktype：目盛りの種類を "simple"（簡易）または "detailed"（詳細）から選択
shade：陰影の濃さを 0〜1 の範囲で指定。陰影によって立体感を強調
ltheta, lphi：光源の方向を方位角・仰角で指定、shade と組み合わせて使用

191

プレゼンターのノート
プレゼンテーションのノート
　(20) ３次元透視図を取り上げます。3D 曲面プロットとほぼ同じものです。
　persp() は、3 次元データを立体的に表現するための関数で、等高線プロットやヒートマップと同じく、z = f(x, y) という形式のデータを可視化します。
　x, y は数値ベクトルで、マトリックス z に対応する x 軸・y 軸の座標です。x の個数は z の行数に一致します。y の個数は z の列数に一致します。
　引数 theta は、視点の方位角で、横方向の回転角度です。単位は度。規定値は 0 度です。�　引数 phi は視点の仰角で、縦方向の角度です。デフォルトは 15 度です。
　引数 expand は z 軸方向の拡大・縮小率です。1 より小さい値で高さを抑えることができます。
　引数 col は、面の色です。色または z の値に応じたベクトルで与えることも可能です。
　引数 border は面の境界線の色を指定します。NA で線を描かきません。
　引数 ticktype は目盛りの種類を指定します。 "simple"（簡易）または "detailed"（詳細）から選択します。
　引数 shade	は陰影の濃さを 0〜1 の範囲で指定し、陰影によって立体感を強調します。
　引数 ltheta と lphi は光源の方向を方位角・仰角で指定します。shade と組み合わせて使用します。

標準関数によるグラフ作成 (20)

標準関数：(20) ３次元透視図（3D Perspective Diagram）、persp()
(a) volcano：火山の標高データ（マトリックス）を立体的に可視化
行と列のインデックスを 10倍して 10 m 間隔に変換

192
（my_base_graphics3.R：824-841）

列インデックス

行インデックス

要素

(a)３次元透視図

プレゼンターのノート
プレゼンテーションのノート
　(a) データセット volcano の標高データを立体的に可視化します。
　828 行目で、データセット volcano の一部を表示して、右上の表を得ます（操作）。
　829～831 行目で、z に volcano の要素、 x に 10 m に換算した行インデックス, y に 10 m に換算した列インデックスを付値します（操作）。
　volcano はマトリックスで、各要素は標高値を表しています。列と行の番号、すなわちインデックスは、東西・南北方向の座標を表します。10 m 間隔になっているので、インデックスに 10 を掛けて元の間隔に戻します。
　833～841 行目で、persp() に x, y, z を渡して、3 次元透視図 (a) を得ます（操作）。

標準関数によるグラフ作成 (20)

標準関数：(20) ３次元透視図（3D Perspective Diagram）、persp()
(b) ２次元正規分布を立体的に表現

𝜇𝜇𝑥𝑥 = 0, 𝜇𝜇𝑦𝑦= 0, 𝜌𝜌 = 0.5の２次元正規分布

193
（my_base_graphics3.R：843-870） x-3 -2 -1 0 1 2 3

y

-3

-2

-1
0
1
2
3

z

0.0

0.1

0.2

0.3

(b)３次元透視図既定値
rho = 0.5

プレゼンターのノート
プレゼンテーションのノート
　(b) ２次元正規分布の３次元透視図を得ます。母平均を 0、母相関係数を 0.5 とします。
　844～846 行目で母相関係数 r と、x および y の値 xx, yy を－3～3 の間で 50 個設定します（操作）。
　849～855 行目で、関数 function() により２次元正規分布の確率密度関数(pdf)　を定義します（操作）。
　ユーザー定義関数の引数で、「rho=0.5」としているので、f_pdf が呼び出されたときに rho が設定されない場合、規定値として 0.5 が使われます。
　857 行目で、 z の値 zz を計算します（操作）。
　関数 outer() は、2 つのベクトルを使って指定した 関数（演算）で計算し、その結果をマトリックスとして返します。したがって、50×50=2500 個の値から成る z を得ます。
　859～870 行目で、関数 persp() に引数 x, y, z　に xx, yy, zz を渡して、３次元透視図 (b) を得ます（操作）。

標準関数によるグラフ作成 (21)

194

標準関数：(21) ヒートマップ（Heat Map）、image()
数値マトリックス（行列）を色の濃淡やグラデーションで可視化する二次元プロット

z = f(x, y) のような格子状データの z のパターンを直感的に把握

使い方 image(x, y, z, ...)・・・x 軸とy 軸の座標（数値ベクトル、昇順）、z は数値マトリックス

関数 image() の主な引数
col：色指定、規定値 hcl.colors(12, "YlOrRd", rev = TRUE)、errain.colors(20)、heat.colors(10)等
breaks：z の値を分類する区切り点、col よりも 1 つ多い数の値が必要

length(breaks) = length(col) + 1
xlim, ylim, zlim：x軸、y軸、z軸の範囲
axes：TRUE/FALSE（軸の表示(規定値)／非表示）
asp：アスペクト比、asp = 1で、x軸と y軸の単位当たりの長さ（スケール）が等しくなる

プレゼンターのノート
プレゼンテーションのノート
　(21) ヒートマップを取り上げます。
　関数 image() は、３次元データを、色の濃淡やグラデーションで表現する２次元プロットで可視化します。主に、z = f(x, y) のような格子状データを視覚化する際に使用します。数値マトックスを色で表すことで、地形や密度などのパターンを直感的に把握できます。
　image(x, y, z) が基本です。x,y は x 軸と y 軸方向の座標を指定する数値ベクトルです。z は数値マトリックスです。x, y を省略すると、マトリックス z の 行番号と列番号が自動的に使用されます。x の個数は z の行数に一致します。y の個数は z の列数に一致します。
　引数 col　には色を渡します。terrain.colors(20)、heat.colors(10) などのベクトルを渡します。
　引数 breaks は、z の値を分類する区切り点を渡します。col よりも 1 つ多い数の値が必要です。
　引数 xlim, ylim は x 軸・y 軸の表示範囲、zlim は z 値の範囲を指定します。これを超える値は省略されます。
　引数 axes は、軸を描くかどうかを論理値で指定します。規定値は TRUE です。
　引数 asp = 1 で、x 軸と y 軸の単位当たりの長さ（スケール）が等しくなります。

標準関数によるグラフ作成 (21)

195

標準関数：(21) ヒートマップ（Heat Map）、image()
(a) volcano：火山の標高データをヒートマップで可視化
マトリックスの各要素は標高値
行と列のインデックスを 10倍して 10 m 間隔に変換

（my_base_graphics3.R：873-888）

列インデックス

行インデックス

要素
(a)ヒートマップ

200 400 600 800

0

200

400

600

X (m)

Y
 (m

)

200 400 600 800

0

200

400

600

X (m)
Y

 (m
)

 100

 10
0

 110

 110

 110

 120

 130

 140

 150

 160

 170 18
0

 190

(a) volcanoのヒートマップ

プレゼンターのノート
プレゼンテーションのノート
　(a) データセット volcano をヒートマップで可視化します。volcano は火山の標高データを表すマトリックスです。各要素は標高値、x, y は東西・南北方向の座標で 10 m 間隔です。
　876 行目で、データセット volcano の一部を表示して、右上の表を得ます（操作）。
　878～880 行目で、z にvolcano の要素、 x　に 10 m に換算した行インデックス, y に 10 m に換算した列インデックスを付値します（操作）。
　882～886 行目で、image() に x, y, z を渡して ヒートマップ (a) を得ます。
　引数 col = terrain.colors(100) は、地形をイメージした緑～茶～白系のグラデーションを指定しています。
　引数 asp = 1 により、x 軸と y 軸の単位当たりの長さを等しくすることにより、地形の形が正しく表示されます。
　引数 las = 1 は軸ラベルを横向きに表示します。
　888 行目で、ヒートマップに等高線を重ねて表示します（操作）。
　

標準関数によるグラフ作成 (21)

196

標準関数：(21) ヒートマップ（Heat Map）
(b) mtcars：自動車性能の相関行列を色で可視化

m
pg

cy
l

di
sp

hp dr
at

w
t

qs
ec

vs am ge
ar

ca
rbmpg

cyl
disp
hp
drat
wt
qsec
vs
am
gear
carb

1 -0.85 -0.85 -0.78 0.68 -0.87 0.42 0.66 0.6 0.48 -0.5

-0.85 1 0.9 0.83 -0.7 0.78 -0.59 -0.81 -0.52 -0.49 0.53

-0.85 0.9 1 0.79 -0.71 0.89 -0.43 -0.71 -0.59 -0.56 0.39

-0.78 0.83 0.79 1 -0.45 0.66 -0.71 -0.72 -0.24 -0.13 0.7

0.68 -0.7 -0.71 -0.45 1 -0.71 0.09 0.44 0.71 0.7 -0.0

-0.87 0.78 0.89 0.66 -0.71 1 -0.17 -0.55 -0.69 -0.58 0.43

0.42 -0.59 -0.43 -0.71 0.09 -0.17 1 0.74 -0.23 -0.21 -0.6

0.66 -0.81 -0.71 -0.72 0.44 -0.55 0.74 1 0.17 0.21 -0.5

0.6 -0.52 -0.59 -0.24 0.71 -0.69 -0.23 0.17 1 0.79 0.06

0.48 -0.49 -0.56 -0.13 0.7 -0.58 -0.21 0.21 0.79 1 0.27

-0.55 0.53 0.39 0.75 -0.09 0.43 -0.66 -0.57 0.06 0.27 1

（my_base_graphics3.R：890-911）

(b)ヒートマップ

相関係数行列
11 行×11 列

11 行×11 列
x = 1. 2. ・・・ 10, 11
y = 1, 2, ・・・ 10, 11

x, y
 1, 1
 2, 1
・・・・
10, 11
11, 11
121 組

プレゼンターのノート
プレゼンテーションのノート
　(b) データセット mtcars の各変数同士の相関係数行列を得て、ヒートマップで可視化します。
　891 行目で、関数 cor() により、mtcars のすべての変数同士の相関係数を計算し、オブジェクト mx に付値してマトリックスを作成します（操作）。
　892 行目で、関数 head() により相関係数行列 mx の一部を表示します（操作）。
　このマトリックスは 11 行× 11 列です。すなわち、行と列のインデックスは 1～11 です。
　893 行目で、マトリックス mx の行インデックスと列インデックスから、数値ベクトル x, y を作成します（操作）。
　895～901 行目で、image() によりヒートマップ (b) の原型を得ます（操作）。
　引数 xlab=""、ylab="" で軸ラベルを非表示にします。引数 axes=FALSE で軸の目盛ラベルを非表示にします。ヒートマップは 11行×11列の格子状です。col で指定された色で、zlim の範囲を等間隔の区間で色分けします。
　903～908 行目で、関数 axis() により、両軸の目盛ラベルを表示します（操作）。
　909～911 行目で、関数 text() により、相関係数を表示します（操作）。
　expand.grid(x, y) により、x と y の要素を組み合わせたデータフレームを作成します。これが座標 (x, y) になります。11×11 で 121 組です。as.vector(mx) でマトリックスを数値ベクトルに変換します。つまり、２次元データを１次元に変換します。要素数は 121 です。round(..., 2) により、四捨五入して小数点第2位までの数値に変換します。expand.grid で作成した (x,y) 座標と labels に渡す相関係数が 1 対 1 に対応します。

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
関数 curve() に式、関数オブジェクトなどの情報を渡して描画
(i) 関数オブジェクト（関数名）を渡す（x の表記がない）

curve(dnorm) ・・・関数名のみを渡す、「dnorm()」ではない
内部では第１引数に x を

 代入して実行
(ii) 式を渡す（式の中に x がある）

curve(x^2)

curve(dnorm(x))
curve(dnorm(x, mean = 1, sd = 2) +1)

curve() は渡された式の中の x を横軸の値（変数）であると認識（必ず「x」を使う）

関数 function()で定義した関数、無名関数（ラムダ式）を、オブジェクトまたは関数として使用可

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m

標準関数によるグラフ作成 (22)

197

(a-1)標準正規分布

内部での処理（概念的な説明）
x <- seq(from, to, length.out = 101)
y <- dnorm(x)

 plot(x, y, type = "l")

内部での処理（概念的な説明）
x <- seq(from, to, length.out = 101)
y <-x^2

 plot(x, y, type = "l")

プレゼンターのノート
プレゼンテーションのノート
　(22) 関数プロットを plot()、curve()で得ます。� curve()関数に、関数オブジェクト、または式を渡してその関数を描画します。
　(i) 関数オブジェクトを渡す場合、たとえば、正規分布の関数オブジェクト dnorm を渡します。概念的には、噴き出しに示したように内部で処理されます。ここでは drnom に () を付けません。したがって、関数 dnorm() の引数に値をわたすことはできません。
　(ii) 式を渡す場合、たとえば、「x^2」の式を渡すと、概念的には、噴き出しに示したように内部で処理されます。drorm(x) のように記述して、式として渡すこともできます。引数を渡すことができます。curve() は、渡されたの中に x という文字を見つけて、これを横軸の値（変数）であると自動的に認識します。したがって、必ず「x」という文字が式の中に入っている必要があります。
　以上のように、dnrom を関数オブジェクトとして渡す方法と、dnorm を式、または式の一部として渡す方法があります。同様に、関数 function() で定義された関数や無名関数（ラムダ式）を、関数オブジェクトまたは式の一部として使用できます。詳細は省略します。

標準関数によるグラフ作成 (22)

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
(a) 正規分布の確率密度曲線

(a-1) 標準正規分布を関数 plot() と curve() で作成（関数オブジェクトを
(a-2)標準正規分布を関数 curve() で作成（式を渡す） 渡す）
(a-3) 正規分布を関数 curve() で作成（式を渡す）

198

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

確
率

密
度

（my_base_graphics3.R：914-927）

(a-2) 標準正規分布 (a-3)正規分布

(a-1)標準正規分布

プレゼンターのノート
プレゼンテーションのノート
　(a-1) 関数 plot() と curve() により、標準正規分布の確率密度曲線を描きます。関数名、すなわち関数オブジェクトを渡す方法です。
　918 行目で、関数 plot() に関数オブジェクト dnorm を渡して標準正規分布の確率密度曲線を得ます（操作）。
　plot() に渡す dnrom は関数オブジェクトですからに () を付けません。
　920 行目で、関数 curve() に関数オブジェクト dnorm を渡して、同様の標準正規分布の確率密度曲線を得ます（操作）。
　(a-2) 関数 curve() により、標準正規分布の確率密度曲線を描きます。式を渡す方法です。
　923 行目で、curve() に式　dnorm(x) を渡して標準正規分布の確率密度曲線を得ます（操作）。
　(a-3) 関数 curve() により、正規分布の確率密度曲線を描きます。式を渡す方法で、引数に値を渡します。
　926～927 行目で、curve() の引数 mean に平均 0、引数 sd に標準偏差 1 を渡して、正規分布の確率密度曲線を得ます（操作）。
　関数 dnorm() の中の x は引数でもあり、変数でもあります。x 以外の文字は使えません。curve() は、この x を横軸の値（変数）として自動的に認識します。

標準関数によるグラフ作成 (22)

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
(a-4) 標準正規乱数のヒストグラムと確率密度曲線（式を渡す）

200個の標準正規乱数を発生させて、
そのヒストグラムと平均と標準偏差から推定した
正規分布の確率密度曲線を描画

199

y

D
en

si
ty

-3 -2 -1 0 1 2 3

0.
0

0.
2

0.
4

（my_base_graphics3.R：929-943）

(a-4)標準正規乱数のヒストグラム
と正規分布の確率密度曲線

高水準関数
で重ね書き

プレゼンターのノート
プレゼンテーションのノート
　(a-4) 標準正規乱数を発生させて、そのヒストグラムと分布の近似曲線を描きます。
　930 行目で、標準正規乱数 200 個を発生させて、オブジェクト y に付値して数値ベクトルを得ます（操作）。
　931～934 行目で、関数 hist() により、 (a-4) のヒストグラムの部分を得ます（操作）。
　936 行目で、サンプルの平均値と標準偏差を得て、m と s に付値します（操作）。
　938～940 行目で、高水準関数 curve() により、平均 m、標準偏差 s の正規分布の確率密度曲線を重ねます（操作）。
　高水準関数 curve() で重ね書きするので、引数 add=TRUE が必要です。
　942～943 行目で、関数 density() に サンプル y を渡してカーネル密度推定を行い、これを低水準関数 lines() に渡して近似曲線を重ねます（操作）。

x -1.96 -1.96 -1.95 ・・・ 1.95 1.96 1.96
y 0 0.058 0.060 ・・・ 0.060 0.058 0

xx

yy

標準関数によるグラフ作成 (22)

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
(a-5) 標準正規分布と 95% 信頼区間

200
（my_base_graphics3.R：945-955）

-3 -2 -1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

x

dn
or

m
(x

)

(a-5)標準正規分布と95% 信頼区間

xx
yy

下側 2.5% 点
qnorm(0.025) = －1.96

上側 2.5% 点
qnorm(0.975) =1.96

95%
95% の領域を囲む座標 (x, y)

(1.96, 0)

(1.96, 0.058)

縦の線

縦の線

縦の線

(-1.96, 0.058)
(-1.96, 0)

392 個

y = 0

プレゼンターのノート
プレゼンテーションのノート
 (a-5) 標準正規分布の確率密度曲線に、下側と上側それぞれ 2.5%、中央部 95% の領域を色付けして区別します。
　946 行目で、curve() により、標準正規分布の確率密度曲線を描きます（操作）。
　948 行目で、x 軸において、標準正規分布の下側 2.5% 点の -1.96 から上側 2.5% 点の 1.96 の間で、0.01% 刻みの数値 392 個を生成して xx に付値します（操作）。
　949 行目で、xx に対応する標準正規分布の確率密度の数値 392 個を yy に付値します（操作）。
　950～951 行目で、中央の 95% 領域の x 座標と y 座標を生成して、x と y に付値します（操作）。
　左上の表で、95% の領域を囲む x 座標は、下側 2.5% 点の -1.96 から始まり、xx の数値ベクトル（-1.96, -1.95, ・・・1.95, 1.96）をはさんで、上側 2.5% 点の 1.96 までです。表の左端のオレンジで示した部分は、(-1.96,0) と (-1.96, 0.058) を結ぶ縦の線になります。グラフの中のオレンジの縦線です。表の右端のオレンジで示した部分は、(1.96, 0) と(1.96, 0.058) を結ぶ縦の線になります。これらの線と曲線で囲まれる範囲が 95% の範囲です。
　953 行目で、関数 polygon() に x, y と col の色を渡して 95% の領域に "lightblue" の色を付けます（操作）。
　955 行目で、y=0 の水平線を引きます（操作）。�

標準関数によるグラフ作成 (22)

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
(b-1) カイ２乗分布を関数 curve() で作成（自由度 1～20）

201

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

x

確
率

密
度

自 由 度

df = 1
df = 2
df = 5
df = 10
df = 20

（my_base_graphics3.R：957-976）

(b-1)カイ２乗分布

プレゼンターのノート
プレゼンテーションのノート
　(b-1) カイ２乗分布の確率密度曲線を得ます。自由度を 1～20 の間でいくつか設定して、１つのグラフに重ねて描きます。
　960 行目で、カイ２乗分布の自由度として 5 つの要素から成る数値ベクトル df_list を作成します（操作）。
　961 行目で、関数 rainbow により、5 つの自由度に対応する色を表す文字ベクトル col_list を生成します（操作）。
　963～966 行目で、自由度 df_list の 1 番目の数値 1 を自由度として、curve() によりグラフ (b-1) の一部を得ます（操作）。
　968～971 行目で、自由度 df_list の 2番目から 5 番目までの数値を自由度として、curve() によりグラフ (b-1) の残りの曲線を描きます（操作）。
　for 文は、i をカウンターとして 2～5 まで { } の中のコードを繰り返します。
　973～976 行目で、凡例を追加します（操作）。

標準関数：(22) 関数プロット（Function Plot）
(b-2) カイ２乗分布における両側確率 5% （片側 2.5%）

の範囲を表示（自由度 8 の場合）

0 5 10 15 20 25 30

0.
00

0.
04

0.
08

x

y

標準関数によるグラフ作成 (22)

202

(b-2)カイ２乗分布の確率密度曲線

（my_base_graphics3.R：978-995）

x

y

下側 2.5% 点 q[1]
=qchisq(0.025) = 2.18

上側 2.5% 点 q[2]
= qchisq(0.975) = 17.53

2.5%2.5%

q[1], q[2]

(0, 0)

(2.18,
y[x=2.18])

プレゼンターのノート
プレゼンテーションのノート
　(b-2) カイ２乗分布の確率密度曲線を描画して、両側 5%、すなちわ下側と上側それぞれ 2.5% の領域を赤で示します。
　979 行目で、x 座標として、0～30 まで 0.01 刻みの数列を生成して、数値ベクトル x を作成します（操作）。
　980 行目で、数値ベクトル x に対応するカイ２乗値（自由度 8）を計算して、数値ベクトル y を作成します（操作）。
　982 行目で、plot() により、x, y から確率密度曲線 (b-2) の基のグラフを得ます（操作）。
　引数 type に渡した "l" は "line"の略で、点ではなく折れ線グラフを描画する指定です。細かく折れ線グラフを描くことにより曲線が生成します。
　984～985 行目で、自由度 8 のカイ２乗分布で下側 2.5% 点と上側 2.5% 点を求めて q に付値し、その中身を表示して右上の出力を得ます（操作）。
　q は２つの要素 q[1], q[2] から成る数値ベクトルです。「q」 は、quantile（分位点）の頭文字です。「0.025分位点」と「下側 2.5% 点」は同じ値です。
　987～989 行目で、polygon() により、下側 2.5% の部分を塗りつぶします（操作）。
　x と y を渡して、塗りつぶす領域の「頂点の座標」を順に指定します。原点 (0, 0) からスタートし、(2.18, y[x = q[1]]) の座標で、垂直に(2.18, 0) の x 座標の上に 戻ります。詳細は、正規分布のスライド 200 を参照してください。
　991～993 行目で、polygon() により、上側 2.5% の部分を塗りつぶします（操作）。
　995 行目で、y=0 の水平線を引きます（操作）。

標準関数によるグラフ作成 (22)

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
(c) t 分布の確率密度曲線

203
（my_base_graphics3.R：997-1014）

-4 -2 0 2 4

0.0

0.1

0.2

0.3

0.4

x

確
率

密
度

自由度

df = 2
df = 5
df = 20

(c) t 分布の確率密度曲線

非心度
省略可

高水準関数
を複数使って

重ね書き

プレゼンターのノート
プレゼンテーションのノート
　(c) t 分布の確率密度曲線を得ます。自由度を 2、 5、10 に設定して、1つのグラフに描きます。
　998～1003 行目で、自由度 2 の t 分布の確率密度曲線 (c) の一部を得ます（操作）。
　dt() の引数 ncp には非心度を渡します。通常の t 分布は非心度は 0 で、これが規定値になっているため引数 ncp を省略できます。
　1005～1007 行目で、自由度 5 、自由度 20 の 確率密度曲線を追加します（操作）。
　1009～1014 行目で、凡例を追加します（操作）。

標準関数によるグラフ作成 (22)

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
(d) F 分布の確率密度曲線（自由度 5, 2）

204

0 1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

x

確
率

密
度

（my_base_graphics3.R：1016-1022）

(d) F 分布の確率密度曲線
 自由度 5, 2

式を渡す

プレゼンターのノート
プレゼンテーションのノート
　(d) の F 分布の確率密度曲線を得ます。
　1017～1022 行目で、関数 curve() に式を渡して、自由度 5 と 2 の F 分布の確率密度曲線を得ます（操作）。
　

0 2 4 6 8 10
0.0

0.1

0.2

0.3

0.4

10 回中、6 の目が出る

確
率

標準関数によるグラフ作成 (22)

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
(e) ２項分布の確率分布

生起確率 π の事象があるとき、
独立した試行回数 n回中、
その事象が起こる確率変数の分布

事例：公正なサイコロ（π=1/6）を 10 回投げて、
6の目が出る回数とその確率の分布

205
（my_base_graphics3.R：1024-1033）

(e) ２項分布の確率分布

10 回中 1 回出る
確率が最も高く 0.32

プレゼンターのノート
プレゼンテーションのノート
　(e) ２項分布の確率分布を得ます。
　1027～1033 行目で、関数 plot() により、生起確率 パイ=1/6 の事象において、独立試行の回数 n= 10 場合、その事象が起こる回数とその確率の分布、すなわち２項分布のグラフを得ます（操作）。
　たとえば、公正なサイコロ（パイ=1/6）を 10 回投げたとき 6 の目が出る回数とその確率の分布です。10回中 6 の目が 1 回出る確率が最も高く 0.32、次いで 2 回出る確率が 0.29 です。

標準関数：(22) 関数プロット（Function Plot）、plot()、curve()
(f-1) ２次関数のプロット（plot() を使用）
(f-2) ２次関数のプロット（curve() を使用）

-10 -5 0 5 10
0

2000
4000

6000
8000
10000

x

x^
4

- 5
 *

x

-10 -5 0 5 10
0

2000
4000

6000
8000
10000

x

y

(f-1)２次関数のプロット

(f-2)２次関数のプロット

標準関数によるグラフ作成 (22)

206
（my_base_graphics3.R：1035-1050）

名前付き引数

プレゼンターのノート
プレゼンテーションのノート
　 (f-1) (f-2) ２次関数のプロットを得ます。(f-1) は plot() 、 (f-2) は curve() を使います。両者とも同じグラフを得ます。
　1037～1038 行目で、オブジェクト x と y に x 座標と y 座標の値を付値します（操作）。
　1040～1043 行目で、関数 plot() に x と y を渡してグラフ (f-1) を得ます（操作）。
　1046～1050 行目で、関数 curve() に 関数と x の範囲を渡してグラフ (f-2) を得ます（操作）。
　引数 expr は規定値ですから、省略可能です。

おわりに

パッケージ graphics を学んだ次は、パッケージ lattice へ進む
R の graphicsを主体とした標準関数は、基本的な描画操作を習得するための出発点
しかし、多変量データや条件付きプロットの場合、標準関数では作業が煩雑になることもある

パッケージ lattice を利用するメリット
(1) 多変量データを簡単に可視化できる

y ~ x | group のような式を指定するだけで、条件別にパネル分割された図を自動生成
(2) 見た目が一貫して見やすい

軸設定やレイアウトが統一的に管理され、論文・レポート向けのグラフを容易に生成
(3) 宣言型の書き方でコードが読みやすい

描画内容を一度の関数呼び出しで定義できる
後から追加描画をする必要がなく、再現性も高い

207

208

作成 片瀬雅彦
作成時期 2026年1月18日

参考文献
Murrell, P (2006) R Graphics, Chapman & Hall

 (久保拓弥(訳) (2009) R グラフィックス、
共立出版

山本義郎ら(2013) 統計データの視覚化、共立
出版

プレゼンターのノート
プレゼンテーションのノート
　

	はじめに
	1　R と RStudio におけるグラフ作成環境
	2　標準パッケージ graphics の概要
	標準パッケージ graphics の概要
	標準パッケージ graphics のグラフィックスパラメータ制御
	3　関数 plot() の使い方
	関数 plot() の使い方
	関数 plot() の使い方：データの種類
	関数 plot() の使い方：引数
	関数 plot() の使い方：低水準関数との組合せ
	関数 plot() の使い方：Help の見方
	5　標準関数によるグラフ作成�（パッケージ graphics, stats のグラフィックス関数）
	標準関数によるグラフ作成：準備
	標準関数によるグラフ作成：データ
	標準関数によるグラフ作成 (1)
	標準関数によるグラフ作成 (2)
	標準関数によるグラフ作成 (3)
	標準関数によるグラフ作成 (4)
	標準関数によるグラフ作成 (5)
	標準関数によるグラフ作成 (6)
	標準関数によるグラフ作成 (7)
	標準関数によるグラフ作成 (8)
	標準関数によるグラフ作成 (9)
	標準関数によるグラフ作成 (10)
	標準関数によるグラフ作成 (11)
	標準関数によるグラフ作成 (12)
	標準関数によるグラフ作成 (13)(14)
	標準関数によるグラフ作成 (13)
	標準関数によるグラフ作成 (14)
	標準関数によるグラフ作成 (15)
	標準関数によるグラフ作成 (16)
	標準関数によるグラフ作成 (17)
	標準関数によるグラフ作成 (18)
	標準関数によるグラフ作成 (19)
	標準関数によるグラフ作成 (20)
	標準関数によるグラフ作成 (21)
	標準関数によるグラフ作成 (22)
	おわりに

